LeetCode(69):x 的平方根
Easy!
题目描述:
实现 int sqrt(int x) 函数。
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
示例 1:
输入: 4
输出: 2
示例 2:
输入: 8
输出: 2
说明: 8 的平方根是 2.82842...,
由于返回类型是整数,小数部分将被舍去。
解题思路:
这道题要求平方根,我们能想到的方法就是算一个候选值的平方,然后和x比较大小,为了缩短查找时间,我们采用二分搜索法来找平方根,这里属于之前总结的LeetCode Binary Search Summary 二分搜索法小结(http://www.cnblogs.com/grandyang/p/6854825.html)中的第三类的变形,找最后一个不小于目标值的数,代码如下:
C++解法一:
class Solution {
public:
int mySqrt(int x) {
if (x <= ) return x;
int left = , right = x;
while (left < right) {
int mid = left + (right - left) / ;
if (x / mid >= mid) left = mid + ;
else right = mid;
}
return right - ;
}
};
这道题还有另一种解法,是利用牛顿迭代法(https://zh.wikipedia.org/wiki/%E7%89%9B%E9%A1%BF%E6%B3%95),记得高数中好像讲到过这个方法,是用逼近法求方程根的神器,在这里也可以借用一下,可参见http://www.cnblogs.com/AnnieKim/archive/2013/04/18/3028607.html,因为要求x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,可以求出递推式如下:
xi+1=xi - (xi2 - n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2
C++解法二:
class Solution {
public:
int mySqrt(int x) {
if (x == ) return ;
double res = , pre = ;
while (abs(res - pre) > 1e-) {
pre = res;
res = (res + x / res) / ;
}
return int(res);
}
};
下面也是牛顿迭代法,写法更加简洁一些,注意为了防止越界,声明为长整型。
C++解法三:
class Solution {
public:
int mySqrt(int x) {
long res = x;
while (res * res > x) {
res = (res + x / res) / ;
}
return res;
}
};
LeetCode(69):x 的平方根的更多相关文章
- Java实现 LeetCode 69 x的平方根
69. x 的平方根 实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. 示例 1: 输入: ...
- [leetcode] 69. x 的平方根(纯int溢出判断实现)
69. x 的平方根 非常简单的一个题,用二分法逼近求出ans即可,额外注意下溢出问题. 不过我要给自己增加难度,用long或者BigNum实现没意思,只能使用int类型 换句话当出现溢出时我们自己得 ...
- LeetCode 69 x 的平方根
链接:https://leetcode-cn.com/problems/sqrtx 实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数, ...
- [LeetCode]69. x 的平方根(数学,二分)
题目 https://leetcode-cn.com/problems/sqrtx 题解 方法一:牛顿迭代法 按点斜式求出直线方程(即过点Xn,f(Xn)),然后求出直线与x轴交点,即为Xn+1: 求 ...
- 字节笔试题 leetcode 69. x 的平方根
更多精彩文章请关注公众号:TanLiuYi00 题目 解题思路 题目要求非负整数 x 的平方根,相当于求函数 y = √x 中 y 的值. 函数 y = √x 图像如下: 从上图中,可以看出函数是单 ...
- Leetcode 69. Sqrt(x)及其扩展(有/无精度、二分法、牛顿法)详解
Leetcode 69. Sqrt(x) Easy https://leetcode.com/problems/sqrtx/ Implement int sqrt(int x). Compute an ...
- C++版 - Leetcode 69. Sqrt(x) 解题报告【C库函数sqrt(x)模拟-求平方根】
69. Sqrt(x) Total Accepted: 93296 Total Submissions: 368340 Difficulty: Medium 提交网址: https://leetcod ...
- [LeetCode] 69. Sqrt(x) 求平方根
Implement int sqrt(int x). Compute and return the square root of x, where x is guaranteed to be a no ...
- LeetCode 69. Sqrt(x) (平方根)
Implement int sqrt(int x). Compute and return the square root of x. x is guaranteed to be a non-nega ...
- 力扣(LeetCode)69. x 的平方根
实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. 示例 1: 输入: 4 输出: 2 示例 ...
随机推荐
- 基于【磁盘】操作的IO接口:File
基本操作Api import org.apache.commons.lang3.time.DateFormatUtils; import java.io.*; import java.util.Dat ...
- .Net core 使用特性Attribute验证Session登陆状态
1.新建一个.net core mvc项目 2.在Models文件夹下面添加一个类MyAttribute,专门用来保存我们定义的特性 在这里我只写了CheckLoginAttribute用来验证登陆情 ...
- 2016 alictf Timer writeup
Timer-smali逆向 参考文档:http://blog.csdn.net/qq_29343201/article/details/51649962 题目链接: https://pan.baidu ...
- MySql cmd下的学习笔记 —— 有关修饰器的知识(trigger)
关于触发器的理解: 进行数据库应用软件的开发时,有时我们碰到表的某些数据的改变时,希望同时 引起其他相关数据改变的需求,利用触发器就能满足这样的需求. 触发器能在表中的某些特定数据变化时自动完成某些查 ...
- SpringSecurity实现短信验证码登录(Token)
- 【转】【Linux】Linux下统计当前文件夹下的文件个数、目录个数
[转][Linux]Linux下统计当前文件夹下的文件个数.目录个数 统计当前文件夹下文件的个数,包括子文件夹里的 ls -lR|grep "^-"|wc -l 统计文件夹下目录的 ...
- dubbo源码分析5——SPI机制_AdaptiveExtension的原理和作用
private T createAdaptiveExtension() { try { return injectExtension((T) getAdaptiveExtensionClass().n ...
- Redis(转)
传统MySQL+ Memcached架构遇到的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量 ...
- MySQL--详细查询操作(单表记录查询、多表记录查询(连表查询)、子查询)
一.单表查询 1.完整的语法顺序(可以不写完整,其次顺序要对) (不分组,且当前表使用聚合函数: 当前表为一组,显示统计结果 ) select distinct [*,查询字段1,查询字段2,表达式, ...
- 持续集成之④:GitLab触发jenkins构建项目
持续集成之④:GitLab触发jenkins构建项目 一:目的为在公司的测试环境当中一旦开发向gitlab仓库提交成功代码,gitlab通知jenkins进行构建项目.代码质量测试然后部署至测试环境, ...