拓展中国剩余定理(ex_crt)
一般来讲,crt(中国剩余定理)比较常见,而ex_crt(拓展中国剩余定理)不是很常用
但是noi 2018偏偏考了这么个诡异的东西...
所以这里写一个ex_crt模板
模型:
求一个x满足上述方程,其中a1,a2...an不一定互质
解法:
设存在一特解x0满足前k个方程组,且LCM(a1,a2...ak)=M
则前k个方程的通解x=x0+k·M(k∈Z)
这是很显然的,因为 (1<=i<=k)
那么第k+1个方程等价于:求使的t值
这显然可以使用ex_gcd求解(移项即可)
那么剩余部分就简单了:不断维护一个x0,最后返回x0即可
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
using namespace std;
ll n;
ll a[];
ll b[];
ll pow_add(ll x,ll y,ll mod)
{
ll ans=;
while(y)
{
if(y%)
{
ans+=x;
ans%=mod;
}
y/=;
x+=x;
x%=mod;
}
return ans;
}
ll gcd(ll x,ll y)
{
if(y==)
{
return x;
}
return gcd(y,x%y);
}
void ex_gcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=;
y=;
return;
}
ex_gcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-(a/b)*x;
}
ll ex_crt()
{
ll M0=a[];
ll ans=b[];
for(int i=;i<=n;i++)
{
ll r=gcd(M0,a[i]);
ll bb=((b[i]-ans)%a[i]+a[i])%a[i];
if(bb%r)
{
return -;
}
bb/=r;
ll M=M0/r;
ll aa=a[i]/r;
ll x,y;
ex_gcd(M,aa,x,y);
x=pow_add(x,bb,aa);
ans+=x*M0;
M0*=aa;
ans=(ans%M0+M0)%M0;
}
return (ans%M0+M0)%M0;
}
int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&a[i],&b[i]);
}
printf("%lld\n",ex_crt());
return ;
}
拓展中国剩余定理(ex_crt)的更多相关文章
- 拓展中国剩余定理(exCRT)摘要
清除一个误区 虽然中国剩余定理和拓展中国剩余定理只差两个字,但他俩的解法相差十万八千里,所以会不会CRT无所谓 用途 求类似$$\begin{cases}x \equiv b_{1}\pmod{a_{ ...
- C++实现,拓展中国剩余定理——解同余方程组(理论证明和代码实现)
拓展中国剩余定理 前言 记得半年前还写过关于拓展中国剩余定理的博客...不过那时对其理解还不是比较深刻,写的也比较乱. 于是趁学校复习之机,再来重温一下拓展中国剩余定理(以下简称ExCRT) 记得半年 ...
- E - Two Arithmetic Progressions(CodeForces - 710D)(拓展中国剩余定理)
You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such ...
- 2019牛客暑期多校训练营(第十场) Han Xin and His Troop (高精度+拓展中国剩余定理)
题意 裸题 思路 题中的模数之间并不互质,所以应该用拓展中国剩余定理. 但是交上去会炸,__int128过不了,所以用高精度的板子或者java大数都挺好过的. 这里推荐java大数,因为高精度板子用起 ...
- luogu4777[模板]拓展中国剩余定理题解
题目链接 https://www.luogu.org/problemnew/show/P4777 分析 扩展\(CRT\)就是解决模数不互质的情况,说是扩展\(CRT\),其实都是扩欧... 先来考虑 ...
- POJ-2891 Strange Way to Express Integers(拓展中国剩余定理)
放一个写的不错的博客:https://www.cnblogs.com/zwfymqz/p/8425731.html POJ好像不能用__int128. #include <iostream> ...
- 中国剩余定理(CRT)及其拓展(ExCRT)
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv ...
- 中国剩余定理及其拓展 CRT&EXGCD
中国剩余定理,又叫孙子定理. 作为一个梗广为流传.其实它的学名叫中国单身狗定理. 中国剩余定理 中国剩余定理是来干什么用的呢? 其实就是用来解同余方程组的.那么什么又是同余方程组呢. 顾名思义就是n个 ...
- Educational Codeforces Round 16 D. Two Arithmetic Progressions (不互质中国剩余定理)
Two Arithmetic Progressions 题目链接: http://codeforces.com/contest/710/problem/D Description You are gi ...
随机推荐
- java 八种基本数据类型
- 用NAME_N带入NAME 让显示格式变为 姓名(类型),类型在数据库中是1和0,显示效果为姓名(1),SQL写法
select xxxx T.PROJECT_NAME||'('||DECODE(T.PROJECT_TYPE,'1','收入','2','支出','3','挂账')||')' PROJECT_NAME ...
- 学习基础和C语言基础调查
学习基础和C语言基础调查 一.一种比大多数人(超过90%以上)更好的技能 说句实话,我还没有那种特别特别自信的.说我能拿得出手的.所谓能超过百分之九十以上的人的技能.毕竟人外有人,天外有天. 姑且算上 ...
- Thymeleaf相关补充
⒈理解Thymeleaf Java模板引擎.能够处理HTML.XML.JavaScript.CSS甚至纯文本.类似JSP.Freemarker 自然模板.原型即页面 语法优雅易懂,OGNL.Sprin ...
- 【转】python 退出程序的方式
[转]python 退出程序的方式 python程序退出方式[sys.exit() os._exit() os.kill() os.popen(...)] 知乎说明 http://www.zhihu. ...
- Linux 文件系统IO性能优化【转】
转自:https://blog.csdn.net/doitsjz/article/details/50837569 对于LINUX SA来说,服务器性能是需要我们特别关注的,包括CPU.IO.内存等等 ...
- 题解-CTSC2012 熟悉的文章
Problem bzoj 题目大意:给定多个标准串和一个文本串,全部为01串,如果一个串长度不少于\(L\)且是任意一个标准串的子串,那么它是"熟悉"的.对于文本串\(A\),把\ ...
- shell 学习之if语句
bash中如何实现条件判断?条件测试类型: 整数测试 字符测试 文件测试 一.条件测试的表达式: [ expression ] 括号两端必须要有空格 [[ expres ...
- CSS3 Hover 动画特效
根据 奇舞团:http://www.75team.com/archives/807 做的demo 根据视频中跟着做的 demo1: <!DOCTYPE html> <html lan ...
- Spring加载加密的配置文件
一.继承并实现自己的属性文件配置器类 /** * 带加密的Spring属性配置文件扩展类 * 加密方式:AES * @author simon * */ public class EncryptPro ...