分别建立三个文件:

file1txt

file2.txt

file3.txt


文件内容分别是:

MapReduce is simple

MapReduce is powerful is simple

Hello MapReduce bye MapReduce


aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABJkAAAD2CAYAAAB1J1a3AAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7snQe4FEXWhg8SDQQFIyqC6LKuGDHnuOaAOWfXnFf9zTmia06YE+acs4A5LyoqgqCgCKKA5DR/v8XW2NO3Z7rn3hmYO/Mdn5HbXdUV3uqurjp1TnWTTCAmEQEREAEREAEREAEREAEREAEREAEREAEREIEGEJinAdfqUhEQAREQAREQAREQAREQAREQAREQAREQARFwBKRk0o0gAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiLQYAJSMjUYoRIQAREQAREQAREQAREQAREQAREQAREQARGQkkn3gAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQIMJSMnUYIRKQAREQAREQAREQAREQAREQAREQAREQAREQEom3QMiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINJiAlU4MRKgEREAEREAEREAEREAEREAEREAEREAEREAEpmXQPiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAINJiAlEwNRqgEREAEREAEREAEREAEREAEREAEREAEREAEmoFg2rRpNnz4cBs/frzNnDlTVERABERABERABERABERABERABERABERABETAmjZtaq1bt7aOHTtaq1atChJpMnXq1Mw333xjCy20kM0///zuYokIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEDpCWQyGfv+++9t9dVXL33iZUhx+vTpNmbMGBs1apR169bNWrRokTeXZlgwoWDi16xZM2vSpEneyAoQAREQAREQAREQAREQAREQAREQAREQARGoP4HG5kHWvHlzW2yxxVyF0SF16dIlb+WbjRs3zrp27eo0UVgxScmUl5UCREAEREAEREAEREAEREAEREAEREAERKAmCbRv395GjhxZsO7zzJo1y1q2bCkFU0FMChQBERABERABERABERABERABERABERCB2iWARVOSFZb7uhzWS7Jgqt0bRTUXAREQAREQAREQAREQAREQAREQAREQgYYScEomiQiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0hICUTA2hp2tFQAREQAREQAREQAREQAREQAREQAREQAQcASmZdCOIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0mICUTA1GqAREQAREQAREQAREQAREQAREQAREQAREQASkZNI9IAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0GACJVMyTZ061R566KEGF6ihCfhyZDIZ6927t3FcKvniiy/s7bffLlVyRacTZnzffffZ8OHDi06jvhfAUyICIiACIiACIiACIiACIiACIiACIjB3CYwdO9ZuvvlmO+644+y0006zl156qagC3X///XbrrbcWdU3ayCVTMr3yyivWtGnTtPmWLZ4vx6xZs+zVV1+1adOmlSyvH374wb788suSpVdsQmHG06dPN+o4J+Sqq66yN954Y05kpTxEQAREQAREQAREQAREQAREQAREQATyEBg5cqTtvffe9uuvv1rPnj1t1VVXtauvvtquu+66PFfUPf3RRx/ZO++8UzegBGdKomRC4fHaa6/ZNtts44o0ZswYC1u+TJo0yfiFBSBYBo0YMaJONaZMmWLffPONodSJWtD8/vvvLv7QoUPtl19+ybk2Wg4fOGrUKKccmjx5cp28OPftt9+68IkTJ9YJHzdunH311Vf2559/1gnjBNf7ssZFKBT+xx9/uPrBizziyufTjNaNm2mJJZZwwVyPjB492qUTtd5KyqdQe9E+48ePN9L46aef4qqocyIgAiIgAiIgAiIgAiIgAiIgAiIgAnOAwOWXX+4US+edd55tvPHGtueee9qNN95oWCehZ/GCDubzzz93+oqotG3b1tq1axc9XZLjZqVIBSuXNddc0+aff35DGXLkkUfaXXfd5Y6Rxx9/3P273377uX9vv/12GzBggP3tb3+z7777zpZcckk7+eSTrUmTJvbZZ5+58L///e9OsYPi58wzz7R5553XXXvsscfaAQccYI8++qjtsccetvjii7vzSLgcM2fOzJ4jzfnmm88GDx5sNIiHiWLsiSeesJVWWsmIf80119hJJ51kK6ywgrsW1zhcAAlHW9iqVStr06bN7MyC/3/yySd25513Wrdu3eznn3+2Fi1a2BlnnGEtW7Z0cZLCTz31VNthhx2sX79+7lqUZueee64tvfTS2Tz8H+G6ce7ss8+2o48+2pZddlnH+6CDDrIPPvjAMeTGuvjii23BBRd0lxfKJ6m9Hn74YVc3btAhQ4a4tCQiIAIiIAIiIAIiIAIiIAIiIAIiIAJzlgBGN/3793d6iLAst9xy9uCDD9rCCy/sTvft29euvPJKW2WVVWzYsGFOl4GlE/8iYb1GTkIlOGiwkgnlDP5/aNHSCBYxuH2hSKJiM2bMsLvvvttZ46CcQdFz+umnOyUTgkbuqaeesr322ssdY/kzcOBAu+mmm6x58+bZLPOVg0bwZUPxgknYtttu66779NNP7ZxzzrHFFlvMHeNeR11QMmHBhKLsoosuckowlDEokHxjoAC79tpr7f/+7/9cWSkX6VNWlF9J4b7gWAeh+EI5RH733HOPUyCFJV/dwnHC9YQhN9WOO+6YjZImn5xM/3eA0u2yyy6zNdZYwzbbbLO4KDonAiIgAiIgAiIgAiIgAiIgAiIgAiJQZgKDBg1yugcMXaLStWtXdwpdxllnneV0K6uttprbZgdjHfQNGKgg6DXQQZRDGuwuhzIDSx/MrdLIAgss4CycUDJhuoWl0qGHHmodOnRwlj8omnD3Iowf1jic9wKgLbbYIkfBRFi+cmA+5gULIVznvGCVA9j33nvPKZjYSBuXM+Trr7+29u3bOwUTgkILkzQv//3vf511lFeGkc5GG21k77//vouSFO7ToS6+cTfccEPnthfdRypf3bKFCf5Yf/31s4dYd3m3wmLyCaenv0VABERABERABERABERABERABERABCqHALqCeeaZx/0QXOF22WWX7O/11193Hk7oXVAwIcTF0Ca8zzJKpnK5yzVIyYQG7bnnnsuxmInDH95XCWUNlkWYad1xxx122GGHOXc49v3hh8KFfYX8j2vXXXfdnGQXWWSRnONC5UBR5IW8w5tl4wqG1RANwz5QCJZVCEqahRZaKHstf6BU8oJyLKpYoyHRGiJJ4T6dsDUWDU1dwnszFapbtjDBHyjpvHAT+XqkzSecVri9wuf1twiIgAiIgAiIgAiIgAiIgAiIgAiIwNwhsOiiizqdBtv5IJ07dzY+1MUPDyg8qtCrRHUZKJT8Xs5ch+4hqs8oVY0a5C737rvvun2VwhXgC3MoisJKDioTVoKwYfVRRx3l6kBYr1697Pnnn7dOnTq5L9Tts88+2fp5TV24wlGzrrhy+PjRuP78b7/95vZjuuGGG3L8FrFgQqhTuBE4x2cCvVAfXP/CQppeqZUU7q8LbzZO+iidwv6RheqWk3nCQb58UCgltVc+hglZKlgEREAEREAEREAEREAEREAEREAERKBEBHCJw+gGT6wDDzzQeYIts8wyTv/i9RVsB+Q9tHy2KKX8NkGcIx22BCqH1NuSCeXEM888YzvttFNOubCiwcWML8chbBbNHkpe2Hz7xBNPzCpoUOagVeO61Vdf3bnKseE2Qh69e/e2Pn36ZK+P/pGvHNF40WO/Mbg/jwXSiy++mI3GBlkokXB7Q1AgYXbmpXv37q58bNqNUG4a2u9blBTu04EhjUtaL7/8sq2zzjpZ97n61i1byNAf+fJJai+SwEIr7GYYl77OiYAIiIAIiIAIiIAIiIAIiIAIiIAIlI8A8/dDDjnE7WvNB84QLJvYs5qPdSF8lA1dgtdv4Cn12GOP5ehu0NOwv1M5pN6WTB9//LH7ClrUdY1C7rvvvm7nciyF2N18yy23zLqA8TU09iHia3JY/QACpRQ+gmjh2Cfp+uuvd9eijWO/p9133z1v3QuVI+9FQQBmZrvuuqvbZLxjx45OSbTddtu5r8khfM2Or7dRD6ySaKTNN988a5aGxRGbYhOOAmfChAm2cbD/0z//+U93fVK4L9vyyy9vp5xyiqsryjb+9lLfumUTCP1RKJ9C7UUSm2yyiducHLdClIrhvani8tI5ERABERABERABERABERABERABERCB0hNgDyb0KOhU2IYIoxWMVQ444ACXGV+uZ/7O5t/33Xefs3Diq/a77bZbtjB88IzzUaOhUpS2SaDIyKDICe8NlCZh9lHC5Q0FTZygNKHi+T6NhyURlcIPsFmzXF0XCh2siFD08CskSeUodC1hlBO/RRQ8cW5hNBjhbEAeF47W0NcDV7+oFAr3+1HBEO1ilFVD6+bLkpSP51CovSgfijQ4FXuvRJnoWAREQAREQAREQAREQAREQAREQARqlQB6Brym8Oaqr6BTweOqdevWbv9odBvoUvx8HV2E39InTldR33z5MFuhctfLkglXOKx78imYKCyKo6jSJFwJKhnelDschjInulFVHIA05Yi7LnyOcqJAyic0UKGyYK7WkHDyJY+o4qYUdYvWKS4fHyepvdIo/KL56VgEREAEREAEREAEREAEREAEREAERKD0BNCp4KHlJWq8g64izvOs9CXJTbFeezLh1oaL1dyWSilHfTkcccQReRu9lHUrlE99y67rREAEREAEREAEREAEREAEREAEREAERCBMoF6WTN26dasIipVSjvrCKGRiVsq6FcqnvmXXdSIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQJlAvSyYhFAEREAEREAEREAEREAEREAEREAEREAEREIEwASmZdD+IgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0mICUTA1GqAREQAREQAREQAREQAREQAREQAREQAREQASkZNI9IAIiIAIiIAIiIAIiIAIiIAIiIAIiIAIi0GACUjI1GKESEAEREAEREAEREAEREAEREAEREAEREAERmCcQmz59ukiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQCwBdEdNmzaNDfMn52nTpo2NHTvWMplMwYgKFAEREAEREAEREAEREAEREAEREAEREAERqE0CY8aMMXRIhWSejh072m+//WYjR460adOmFYqrMBEQAREQAREQAREQAREQAREQAREQAREQgRoigAUTOqNRo0YZOqRC0iSwYMqgXBo+fLiNHz/eZs6cWSi+wkRABERABERABERABERABERABERABERABGqEAC5yWDChYGrZsmXBWjslU8EYChQBERABERABERABERABERABERABERABERCBBAL6ulwCIAWLgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgkE5CSKZmRYoiACIiACIiACIiACIiACIiACIiACIiACCQQkJIpAZCCRUAEREAEREAEREAEREAEREAEREAEREAEkglIyZTMSDFEQAREQAREQAREQAREQAREQAREQAREQAQSCEjJlABIwSIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAskEpGRKZqQYIiACIiACIiACIiACIiACIiACIiACIiACCQSkZEoApGAREAEREAEREAEREAEREAEREAEREAEREIFkAlIyJTNSDBEQAREQAREQAREQAREQAREQAREQAREQgQQCUjIlAFKwCIiACIiACIiACIiACIiACIiACIiACIhAMgEpmZIZKYYIiIAIiIAIiIAIiIAIiIAIiIAIiIAIiEACASmZEgApWAREQAREQAREQAREQAREQAREQAREQAREIJmAlEzJjBRDBERABERABERABERABERABERABERABEQggYCUTAmAFCwCIiACIiACIiACIiACIiACIiACIiACIpBMQEqmZEaKIQIiIAIiIAIiIAIiIAIiIAIiIAIiIAIikEBASqYEQAoWAREQAREQAREQAREQAREQAREQAREQARFIJiAlUzIjxRABERABERABERABERABERABERABERABEUggICVTAiAFi4AIiIAIiIAIiIAIiIAIiIAIiIAIiIAIJBOQkimZkWKIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgkEJCSKQGQgkVABERABERABERABERABERABERABERABJIJSMmUzEgxREAEREAEREAEREAEREAEREAEREAEREAEEghIyZQASMEiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIALJBKRkSmakGCIgAiIgAiIgAiIgAiIgAiIgAiIgAiIgAgkEpGRKAKRgERABERABERABERABERABERABERABERCBZAJSMiUzUgwREAEREAEREAEREAEREAEREAEREAEREIEEAlIyJQBSsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQDIBKZmSGSmGCIiACIiACIiACIiACIiACIiACIiACIhAAgEpmRIAKVgEREAEREAEREAEREAEREAEREAEREAERCCZgJRMyYwUQwREQAREQAREQAREQAREQAREQAREQAREIIGAlEwJgBQsAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiKQTEBKpmRGiiECIiACIiACIiACIiACIiACIiACIiACIpBAoFlCeIOCZ82aZT/++GM2jebNm9vCCy9sLVq0aFC6xV78008/WdOmTW2JJZYo9tLY+KVOLzYTnUwk8Mcff9h3331nrVq1shVWWMG4vySVR2DKlCn29ddf24wZM2y55ZazBRdcsPIKqRJVLIEffvjBfvnlF2vXrp1169bN5pnnr7UR9cWzm+3nn392z9fSSy89V9tx+PDhrhzt27e31q1b55Rl0qRJNmrUKNd+9S3n+PHj7ffff3fvcsYRce1PnC+++MLmn39+6969u40cObJB7/9onnMVsDIXgTlEYMSIETZ9+vRsbvPOO68tssgi1qRJk5KVgDzoDxZffHGXZtzzXLLM5kD6pSxrNaYVvacYuzMnZH7mJXpPNIQD80/y4L4tVjTuKJZY6eMzrpk2bZp17NgxZ37HeBDx/Ubpc1aKpSLQJBNIqRKLpjNmzBj75z//mXOaFwrnzjzzTPfwzwnZbLPN3ATl8ccfL0l2pU6vJIWqsURuu+02u+OOO2zmzJmu5gsttJCdd955tu6669YYicqu7tNPP21XXXWVMcFEmjVrZgcddJD961//quyCq3RznQAKidNOO80GDBiQLQvKicsvv9wpKxH1xbPR7L777k6B89Zbb5Wl3V555RX78ssv7aSTTiqY/vbbb+8Ugvx77rnn5sS98cYb7a677nLKoXfffbdgOvkC7777brvhhhvswQcftOWXX75O+6Pk2n///Q3FEPLMM8/Yfvvt16D3fzTPfGXTeRGoJgI77bST8TyFhXHWcccdZ9ttt11JqkoeKKPvu+8+l14p+/O4PquU6ZcEQI0lEndPtWnTxr1X/D0VvScagmiDDTaw1Vdf3a655prUyWjckRpV2SPusssuNmzYMDviiCPs0EMPzebHOx3FJO9mSWUTKKslk6/63/72N+vZs6dTCLzzzjv24osvGh3Lv//97zlCB6XWfPPNV7K8Sp1eyQpWIwmhLETJxCo1nc3YsWONCQz30wMPPGDLLLNMjZCo7Gq++eabduGFF7r2OPjgg11hmWT27t3bllpqKdtmm20quwIq3VwlcNlllzkFE4OLNddc0yk5brnlFjv++OPdggEr6+qL50wTvfDCC/bJJ58kKpkoDRalr732muuP/XuXtSze+2ErtFKUPNr+lBMF08UXX2ydO3e2Dh066B4pBWilUZMEeH6POeYYV3eeqyeffNLOP/9869q1q7MqLbVEn+eGpB/XZ5Uy/YaUrZavxcL0lFNOcQjGjRtn9957rxsn8o6vj8VRqVlq3FFqog1PD2XSDjvsUBH3R8NrU1spzBElE6ZuaCSR3Xbbza1WvPHGG24QikvdI4884o4nTJjgOhqsHJhAIP/3f/9n6623nr3//vvO5YYJKivZG220kX300Uf2zTff2DrrrGOHH3643XPPPdavXz83qT3xxBPdANML+XjBBI90vvrqK5cPabH6iZUFkhROnHB6/P3www8bk2rqsPbaa7s6tGzZ0rkOnHHGGa4OQ4YMsQ8++CBbvkUXXTRbJv2RjgDm20w0UVJef/31tsACC7gLaWtWQ+6//34766yz3EBoscUWy1rM9OrVy61801EhV155pXPZ4L5Map9i71Huw6irSLraVU8sJpW0DxNOLA9oC6RHjx5uxYpn3iuZos84/BiIJD1TpIUFB/L888/b22+/7dqee+Oiiy6yLl26uJXYzz77zJZcckk7+uijpYBsRLcY/T2DTlaxkNVWW824r/r37++sZWhfxPfFKKT8ini4mieccIK7/wq9ZxoRlnoVFZNzBvMffvihU8rjboZF4corr+zSK/TO412Kgm/q1Kl21FFH2eabb+4WjfIJ7z/ewyiafH/78ccfO7c13u+ff/559tJC704iUW4WFHhv8j7144Jw3r79r776areIhbz88su20koruT4fib6vC90LafIM56+/RaBaCeBt4N+x1JGx9emnn+7G4yiZksZG9XkPh59V+hyef8b6PP+UZYsttnC4C/VphfqsaF+QNM7Q2L20dzftiKWrF6zcaeOhQ4fGKhGS3hGF7pFoyRkfDBo0yA477DC30BknGnfEUZl75xgDjh492q699lq3eBQnhfoCwpgXFKMzSOrX4sqgc/EE5vjG3ygJMHPzCp0LLrjAUAAwGWV1pE+fPlktN0V+/fXXXQfEv0zcsYZCIcUNN3jwYDehpOM44IADnGk8ioNXX33VuVl4wTSflxTC9UxaiIOFFSurN910k0svTThxwulxTB1wCaJOKDsYzHsrLW5Wynvrrbe6OjC4x6Xh1FNPdflJiiPAC4C9mOgwvIKJFDCLxSUSRQOCso924AVEfAYSuFggmMNyjNtGmvYp9h4t5Z4FrsCNUBgw4A+/xhprZBVMVIMXxu233+4sz7xEn3H4pXmmuBe8MHDgOWP/J6Rv375OGclkkz2gOOa5576QNA4CTGh4VrkXUEwwWKCfZ4HAK5jCfTHvFhQo/FBocD/Q77Man/QMNw4i9S8lrsQ8DyhpVl11Vac0OvbYY50ba9I7kX7SWyDxt3935ysN73EG8LjKennuuedsxRVXzFn4IazQc044g0OUzuy9QBnee++9nGzD7c9eTf75xurC/x33vi405kjKM1+9dV4Eqp2A32PVL5Am9avFvoejzypWq4zjeIez/QYLUt7VtlCflq/PiqZfqP9JMzas9vYuV/147/Bj3MaYnfZadtllY7Mr1EZcUOgeCSfIfcQ8r1OnTnkVTMTXuCO2GebaSe6Lbbfd1o3lwwtU4QIV6gsw9ChWZ5DUr801GI0w4zliycSLCUUQE346eSb9Bx54oOtgGHxuueWWdskllzh8KIkYDGNl9I9//MOd+/XXX91Ak5UTv7dL27ZtnT8mE1IsIpjUPvXUU06Jw4sIJRKTEjqvsPCiYtV2ww03dNYuDFyxjMLXHEkKz0ksOMA6iTqQHiupCDcoCi8G8n4llckv5UMpdsUVV7hVdUxFqYckPQE2BUR4UYSF+4CJyMCBA919htIJyzJW0JlwYAHx/fffOwsIP0hhhcpLvvZhklvsPZq+NtUb07cTL2yE5wrlqhc2Vdxxxx2zx+FnPO0zlb24wB/0O/QJKLboVzChD6/MFrhUQXOZACb1WM7Ql/KjL19rrbXskEMOcQqLqGDpxIIEQh+MEpLFBlbB0jzD0fSq5Zi+j4HWvvvua1h1IaussoqdffbZbtCGUqjQO5H3I9fhLpdmbwveu1gb3HnnnU7RzMau9MUoeXknekl6zlnxZnC48847uz0cEVx3sKKIE6wmcLtAuXXdddfFusgnjTm4x4rJM64cOicC1UIARa3vM1DeMy5njM4iX9Kz5MfvsKjPe5j+hvHb3nvv7azUKQtjfRYI8V4o1Kel6bOS+h+N3ctzF7MYwHwpLCj2+VhEVJLaiLF+vnskvD8r4z4s67HAZfxQSDTuKERn7oSxIMZ7mcUhlIVhSRrfMNZB0uoM2AOqlseLpW7hOaJkYnLvLYVwg+GlgXsb/t0ILxPvTjd58mR3LqxkwqQ/6v/N18T8FwkYxLK66r8e593keCl55ZEHR1xekqywbLXVVi5dbkKff1J4tAH8oDncoaHgYFL03//+N6tkwnQfBROCxQ0iJVOUZvKxVxoykYmKtyDi3/XXX98pIHGf8PcBLzfcODjHxAqrGp9Ovvb59NNPXTb1uUej5aulY/+lP/8889WYSy+9NIsAi4qwkin8jKd9ppJ48mz7PoH7ASVT2Pop6XqFz10CPKPPPvusc4/DzQvlAs8v1kkMNLw1U7SUKDTof1m8oI9nUoIkPcPRdKrlmH4QZdvNN99sbKqKwpfBOcLEsdh3XhIXLMpwk0PJRDvQTvQDuNn5/pQ0kp5z73KMNaQX+ol8SqakchGe1J97d7xS5pmmXIojApVIAEUO726EhSMUv7xHsQ5Nepa8kqm+72HfP6BQQrBcZ5LJ+D6pT0vDMqn/8UqmfGNDLRCnoVw3DveOd4FnAZjFdxYFcKWOfgE8qY381w/j7hGfM1+gxgIWZUTYTa9uyWaf0bgjH5m5dx4FJHtzcp8wpghL2r4grc4gbb8292g0rpzniJIJpQuaahRB4Y7ZfxmMlxGbdIYlPIHwSplweNRkP3pM3LgP53FD8pLEdYrJCns9YNmClQUTl6TwaPP6OoT3ivDKL++6wzVxdQj7hkfT1XE8Afb3QrCECQvtgDWb/7Q1ykXuKyaotAOTTdoZk0usnfbcc8+c6/O1T0Pu0fga1MZZP1jw7fT3v//dHnvsMVd5vk6DNWNYwvzTPlPh6/2kOR9dr+CN6xPyXaPzc48AimE+Q88EhT38+CEoLnBvZhNp9tiKCgoU/PZRnLB3CJL2GY7+xE5XAAAgAElEQVSmVS3H1J9FHayKsDBi8oSFJta0hBX7zkviguIeE3fe4eyVhtUpyiGU+uFPoic9595FL/zRjvCnrpPKEReedC+wIIaUMs+4cuicCDQGAuGvMuOSwgo/73Se5aRnKa5+xbyHffp+wYr0GNOxUJ3Up8XlHT2X1P/4+PnGhtH0dJyOAPt8YWjghTZlDy2UTVguhyVtG8XdIz4d3nWbbLKJW2Ri7MBiSz7RuCMfmbl/fq+99nL3CFttsADl+5K0fUFURxA9pobMD+rTr819OpVbgjmyJxMdAJrIqObfK5bQHGMOxw8zXNwb/A1UanTffvutc51hVZUvkbHqjRUSFg64DCSFR8vj68AG5F7831HFWfRaHRdPgEkniiaUgt4li1SYzOBKSbt6QblJm2LBxEoHJrpMXJkEYdmSRubGPZqmXJUehz1ZmMzijgNzVkBxneNfXvqFJOmZoj/h5z9TTlpYPkaFTb9ZiUX85BErRknlE2C/PfZaCO/dRan96nicJSPhuEBjIXruuedm3yG1/gzj1oIJOFZMuKXjqh7+KEaadx7KnbSLIr5t+JIT73LcGbAqQ8JKpqTn3IdTPi/hv7Mni/gj6V4oR55FFE9RRaBiCeyxxx6ubN4yNOlZ8hWp73vYu9qzKIgwAWSiySJVUp9G/KQ+K6n/8eXXv+UlELco73NMaqNC90g4DRae+LgThgV+u4y4WmncEUelMs4x5j/55JPdArXfG46SpekLiqlB2n6tmDRrOe4csWTKB5j9NegkUPZwA6Gd9Js1o9kuh+BuxZ4NmE+yRwX5YgHDyiUrFlhEFAqPlokVWlZt+aQ2mxMyieYLZ0xmUXKkHZhH09VxPAFW3dmXg323+ELErrvuahMnTrSHHnrIra6xMbAX+LNqQZuzXwvWZtxfrIT5ryrF5/LX2blxjyaVqbGE004oCtjTgQEqKwc8Wyh+witP0fokPVPcA927d3duM+z1gN++VyKF00KZhZsQCkX2dOM+SGMuHS2Pjuc8Ae6Brbfe2plGo0zGfQmlIu5zWLj4LwyFS4b7NQNILGi4hj4ZYRVzTr9n5jwxcxabWBuEhS85woNnj5Vc9ipkgMbm6QjXJL0TicdGv7wb6T+xUgwr83MyDA68IgnFEv0v7eUt0cJKpjTPOQsK5MnqN/vp4ebeEEnqz3mXlzrPhpRX14pApRDAGhnXMf91z6RnyZe7vu9h9sxkTIf1KuMFvxDMVzE5X6hPI++kPiup/9HYvTx3HuN1vwcvf3M/MabjPR2VpDbC6iTfPeLToj/nHYf3Ah+WYm8mvoDqLWXDeWrcEW2ByjqmT+DnvyJL6dL0BcXUIm2/VkyatRx3riqZeMj/85//2DnnnOO+voZg/cCGpChsyiFoKdkbBt9uPmOP0AlddtllTtGUFB4tE50j6ZxxxhnOFJNjJkTePTDfins0HR2nJ8AEk8nKDTfc4JgjKJFgHraW417i0+Uo/FD+MUBCkUjctG4Xc+MeTU+ismNiIcgGnGwWjPUgwguB9mNgkU+SnimuY0WDzUDZ6w3XKPaA8e54Pl2U1ryM+HoJikX6FfKXNA4CWCMxUXj00UedggRBCYDFa9zG337/BpSO4f2/UEjO6ffM3CCM8hZ3lrBQ9x49ejjlE88iynkEi1AsbrH0TPPOQ5mPgoo9EehjCymZ/DsPa0YmprxX/aau4fdhmuecj2TwJVbaj2eYTcBx86uvpOnPS51nfcuq60Sg0ggwUWesS5+MRVGafrW+72HGbIzT2fSff1EqYcmERSZ9R6E+DW5JfVZS/6Oxe3nuPhYrnnjiCZc4yh8WQQ4++GD31dOoJLUR90S+eySaFgsVbPpN/467PV8sixONO+KoVM45xv7s0emFrVGS+oJiSp9mjFBMerUet0lggpqpBAhsQMrKQXSj7nKVjWr/9ttvTpsd91WDpPC4cuGWhbVMeH+muHg6VxoCtBF7sPCiKpd7Zbikc/oeLQ2luZ8K7YSJK6tOuOnwnLMRMBt5JkmhZ4p0CafPYDASFqwosF5BCUXe5Os3jU/KU+GVRaCUz3ktP8NwxH2NwXZcf5n0zkOJhVUCz23c9Q25awo95/QX9PMot0r5DBe6F8qVZ0MY6VoRqFQC+Z6lUryHff+Psjq8Vxoskvq0tH1Wof6nUpnXWrkKtVGhe6S+nDTuqC+5uXNdUl9Qn1Ll69fqk1atXlMxSqZabQDVWwREoPQE/ODWf9K+9DkoRREQAREQAREQgXwE9B7OR0bnRUAERKD6CUjJVP1trBqKQM0R4FP3uNfgGikRAREQAREQARGYswT0Hp6zvJWbCIiACFQSASmZKqk1VBYREAEREAEREAEREAEREAEREAEREAERaKQE5mmk5VaxRUAEREAEREAEREAEREAEREAEREAEREAEKoiAlEwV1BgqigiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0VgJSMjXWllO5RUAEREAEREAEREAEREAEREAEREAERKCCCEjJVEGNoaKIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQGMlICVTY205lVsEREAEREAEREAEREAEREAEREAEREAEKoiAlEwV1BgqigiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0VgJSMjXWllO5RUAEREAEREAEREAEREAEREAEREAERKCCCEjJVEGNoaKIgAiIgAiIgAiIgAiIgAiIgAiIgAiIQGMlICVTY205lVsEREAEREAEREAEREAEREAEREAEREAEKoiAlEwV1BgqigiIgAiIgAiIgAiIgAiIgAiIgAiIgAg0VgLNGlLwIUOGNORyXSsCIiACIiACIiACIiACIiACIiACIiACIjCHCXTp0qUsOcqSqSxYlagIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1BaBJplAaqvKqq0IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiECpCciSqdRElZ4IiIAIiIAIiIAIiIAIiIAIiIAIiIAI1CABKZlqsNFVZREQAREQAREQAREQAREQAREQAREQAREoNQEpmUpNVOmJgAiIgAiIgAiIgAiIgAiIgAiIgAiIQA0SkJKpBhtdVRYBERABERABERABERABERABERABERCBUhOQkqnURJWeCIiACIiACIiACIiACIiACIiACIiACNQgASmZarDRVWUREAEREAEREAEREAEREAEREAEREAERKDUBKZlKTVTpiYAIiIAIiIAIiIAIiIAIiIAIiIAIiEANEpCSqQYbXVUWAREQAREQAREQAREQAREQAREQAREQgVITkJKp1ESVngiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUIAEpmWqw0VVlERABERABERCB4gn8+OOPxV+kK0RABERABERABESghgg0q6G6qqoiIAIiIAIiIAI1SOCxxx6zUaNGWbNm6YY906ZNsw022MBWXnnlLK2vv/7aDjnkEHv++edtoYUWqkGKqrIIiIAIiIAIiIAIJBNIN9pKTkcxRGCOEJg1a5ZddtllduKJJ9q8885bkjzfe+89GzNmjG233XYlSU+JiIAIlIZA//797cUXX7RJkybZ8ssvb/vss4+1adMmm/gHH3xgTz31lE2dOtV69Ohhu+++e14lwi233GK///67u7ZJkybWunVrW3fddW211VYrTWHnciqlYDV+/Hi77bbb7Mgjj7T5558/W6Orr77apkyZUqeGW2yxha2xxhp1zk+ePNnuuusuO+qoo1xY37597Y033rCxY8da586dXTt26NChznWciF7LuXzleuGFF+zzzz+vk87JJ59sLVu2zDmPUoj3R9OmTbPnZ86caVdccYWddtppNs88uYbdhEXfMU8++aTtuOOORSmYiqk7BUsb/9tvv7XHH3/cvbdWWmmlOgz8iULPSLHtmjcTBVQtgXzPXtVWWBUrO4FC91Sh9xj998svv2z9+vWziRMnWqdOnWzPPfe0JZZYIrbMN910k/3555/G+yC6uMC4/80337Stt97aVl11Vav28UEsoAo/OWNmxnr3/ckGj55sm/29vQ0bM9m27t7BOrWf1+5+Z4Rt+Y8OtkS73Pd8oSr9OWWG3fvuz3bQ+h1tvhZ/jQPirslkGCfGheSeSxsvOaXqjCF3ueps16qtVSZ4op944gk3qSyVMFj/+OOPS5Wc0mkEBMaNG2dye6nshrrvvvvsggsucEqMvfbay4YPH2677bab/frrr67gKC3OP/9823TTTd35d999184444y8lXrppZeccql79+624oorOqXCCSec4Cb1jV1KwQorn2OOOcYeeuihHIUSfe7iiy9uyyyzTPa32GKLGTzbtm0biw7lhx/UM3jv1auXU+gdfPDBhoXQHnvsYaNHj068lgj5ykUYk43mzZtb165dc34tWrSokzb3CUrIXXbZJfvbaaedXLyePXvmnCcOcVFsehkxYoSzYOI+23vvvWN/1OvBBx/MXlNs3dPGnz59ul188cWu/sOGDatTV3+i0DNSn3bNm5ECqpJAoWevKiusSpWdQKF7Kuk9dtFFF1mfPn1s2223de8q+n3eKfnGcixQPffcc66fjMrtt9/u3mFDhgxxQdU8PojWvbEcP//f0TZgxAQ7cpOlbI3ObWz6zFk2K1D+IK8PHGO/T5yeuiqj/5xmpz32nT3x6a82Zfqsgted9/T39uKX8eOT8IVp4xXMrNoDg4HGHJVgguDyCyb2mU8++SQzY8aMbP6BNUlOWTgONNd1yhdOIxhg1QmPnig2fvR6HVcOAe6X1VdfPfPHH39kgkF/5sMPP8wEKxp1CjhhwoTMF1984cIDhUKdcO6tjz76yKUTrLhnzj333Jw4pPnZZ59lBg4cWOdaThQKDyZPmWAVPMN9Rx6UpVblp59+ygQrRpngRZ6DADbhZztYbcrw85KGYbgNov1E3DM/dOjQTLCqn6HP2GGHHTI333yzyy4ubqH2LUXZa/V+SFtv+AdKicxXX32Vc8lBBx3k2o3na+edd84Eg8dseGDtlAksa1wbx0lggZIJVkFzgq699trM6aefHhe90ZwrBatnn302s9VWW2Vee+0117/+9ttvBet/9tlnZ4IJQWycYAHAtQ39Ls/lpZdemgkmATlxg9XnzCOPPFLn+vC1BCaV6+ijj65zj9RJtMAJ8qO+P//8c4FYmUygGMtw7915552ZYBXe/V5//fXMYYcdlj3mXGCplX0fpak7jIJJl8s7TXxfyOuvvz5zzz33ZPbdd9/MM888ky17OL36PCOF2rUgIAVWHYGkZ6/qKqwKlZ1AoXsq6T1G/7jmmmtmPv3005xyBgtNmfvvvz+27IGVZ+acc87JBJ4POeHBglWGdxD9Z+BG7cKqdXwQC6YRnBwzYVrmsheGZG56Y1hm1PipmZlB+3Nu+ozZOoF9e3+RGTD8rznDpGkz3fF3IydmolqDl78cndnt5s8yb3/7e2bTKz906eSTYb9NypzQZ2Dm3ndHZH4YPSkzfvJ09/MyZfrMzLhJ0zPRePnSq/Xzc9ySiZVD9kZAC3344Yc7c0WE1U3M0L1WGZP5YFDnVp6jEk4jjQVKsfGj+em48gg8/fTTdt5557lVDVadcXfzgqUTK8rEYeWZ8ODFlA3n3H777We4Wvz73//OCSMSlg1cz2r8JZdc4u7TsKtIUjir3A888ICzksBcl/v6+++/rzyIZS4Rbo3HHXecM28+5ZRTHGvMnXnWt9lmGwuUb9kSsKrEz0sSQ6wJMJOmrWHMPim4VHkJP/OBos9ZuJA/98QBBxzg7okjjjjCRY/2D4XatxRlzxZSf+QlgKvTNddcYyussEJOHCxoeBYD5ZOzhFlnnXWy4bg2bbzxxvbqq6/mTTcaECiZbZFFFomeblTHpWDF6vKtt95qwSA+se6sCv/www/O5S1OeMY22WQT59bI+ztQ4tlSSy2VjcozhNvcoosuWufy8LUEJpWLPoR2p4+h/8Byhz6mWKE/wE0wWMSocynpBYsQzs2OvgM3S36tWrVy1lr+mH+x7JpvvvlcGmnqjrsaVnhp4xOPfaFwgYvjH06v2GckqV3rgNGJqiaQ9OxVdeVVubIQKHRPJb3H6E9xj+P9HkzcXflGjhzpxu9dunTJW16snhgveld5IjIHYAyaJNUwPkiqY6WG3/LWT/bx0HHW//uxdukLQ5zV0vF9Bto3IyfWKfKHP4yzQ+/+0p77YpTd2X+4HffgQAuUTtl4WDH9Z49utlqnv7ZaqJPI/07cFbjh/fj7FOv73R92R7/hNujXSXbAHQNs/OTZY4MLnhlsHw8bZ9F4+dKr9fNzfE8mOgc6BUwYMct/5513bPPNN3f7KmACzkCHDoNBVLDCGNs+4TTizOKjFxUbP3q9jiuPAC8rJgUICksmGSgmEHy6A2uH7MQGZdHDDz/s9l7hRXPllVdasCLt7jMmPAceeGB2jw3cqM466yw3wSU+E4xjjz3W7S/CPiVJ4Z4UylIUTbwYyY/BP8qQWhEUACiTGRAsuOCC7tm+6qqr3KQx7Ya5+RgyQWXi6tsIpigcaaPAssEhDj/zKKL5Batobp8W+hZcTfbff/86cVFub7/99nnbP2375St72utrPR4T+uheP7Q7g0WeJ1yXFl544Zz9dWDGIPTtt9/Oi49FjcC6zt2PgwYNMvbdQQHamKUUrHA5QNi/opDwXAVWNO45i1sAQklDX+v7Zp8W7s2B5ZLbb+n99993A/wNN9wwJ6u4a5PKRXnpC3BrQ5F19913u4UH+lrc6NLKjTfeaLhivPXWW65vYN8oL9ddd53hUo0SK7pvU5r0C9WdsU/YJY/0CsXnfYWLqFd6RfMPp1fMM5LUrtF8dFz9BJKeveonoBqWmkCheyrpPUZZ6KPPPPNM58pMf48incXC8GJTtMy4evPxBr+4TF+HGx3vqFdeeSUnejWOD6I8GsvxGdt2sV4vD7XF2rawfdeO33OLuowLlD8XPjvYLu65nK20ZGtXvctf/MH6fPCLHbLBku54n/9dP2HqX4onFxAj5+7Q1c58YpCtt1w726b7wi5Gj2Xa2m3B3lAoqbB72bRbe/eLxotJruZPldWSiQGR/3nSDOp33XVXQznEl1tQMvHQM3nAesTvj4Gyaf31189eTzpxaUTziB5zTTjPaHj0uObviEYCIHB3ypYUv+zA3SF7jEKHyUDg+uEsXZjw//LLLy4cBSeWC37lg/uQvUK8oIBYYIEFspsBkw4rIayQI0nhPh1Wxv0kjOtRcpRyH6lsgSv0D1b0sWTAmoln208GsURJK/kY0jdgvYBFC2nzYxPhsN99+Jln8kpZ/EbAtD/KLvodJBw3bfsm1SFf2ZOuU3g8gcCU3lmi+Y2msVqLbuzMlTzPcRtU+1QJ597hfmCzUFZCAzfK+Ewb6dlSsYqrPgp8nqeogsjHxTp07bXXjlUko9ijbbj+m2++yVlZ5vpC18aVhXMoIo8//ni78MILncUpiiDuDRTcxQgbZ6OcYgNYlM8sWnhhY1juF5SbWET6HwotLFTD5/j71FNPdQsdYclXd8Y4fnEkTXz2bKLOUQs/f204vWKekaR2LYal4oqACIhAQwlE32Okh2URyigUTFiS0scFW2LkWLHH5cvHEVhkRDBo4N3PIlVUamF8EK1zYz9+f/BYa9V8Hpsa7LP0UWDRxK/9As3tveB8qeSoYE+o/oPG2u19h9sJW3QqVbI1kU5ZLZnYrBWhU2AV04v/EgCrhZiWB/veuI4C6xNcYOhIWO086aST3IavhdKIhkePo3lGw6PH2ULqj4omEHZx4cUQVkJyH/HFKVZ1WcVA2ePdIFAuRN1jUCoFe5C4+vLVi6ilTbt27bLueEnhHlrYwo7rsYjipRk3Ma5o0PUsHPVnQsTEja83sWkzGy6jAAx/tconj8InahmRjyH9A8q/YE+3nNJtueWWOce+n2FShlsL5aAMjz76qHNhDOfn46Zt33BGxZS9Vtq/nrdN7GUogVAwsVqJCyrCMxx2kfUXYkFXSJG53nrrWfg+CfazcZaLfDWsGqSUrOJ4sDkqiozos0pc+jisN7F0igr3vV/FJh7WYyigeSaTro2mFT7Giiks9BkbbbSRBfvxZccOha6PXst9Rv3CXzBkQsPXTKNfJxowYIBTjAX7euRkgdKa946XpLpHy5cvPsov3Anh6xWjLFzw7mLj26WXXjonqWKekULtGi2fjkVABESgnATi3mNYk/IVUMaV3bp1c9nT9/HlOD4Qwvskn2y22WbuXYPlExZNLPzGSbWPD+Lq3NjPjQ0smbAu+vynXCvsTbotVLKqtZuvua28VGv7NnDVm79lWdUmJStzpSRUVlq4KcVJ2OQcayasTdBKY/3ARKJ3797WsWNHNxlNSiMaHj32+fs8o+HR47jy6lzlEYib5FBKLBNwhWMw7hUHTAT8nkzeiiVco/BklQlq9KtHpOknrknhPl2UFV5In8kPbmO1JMsEX6PCrQMJNst2igK+vITbIe3H6r4XwqPKgXwMiYfiGjdGL0y2oq4s/piBCPxRHg4ePNhZKjARDYuPm9S+TDQbUvacTHWQSAALQgaHLDiElUO4sqK05ctauMh5Yb8a9mVKK94KEsVH9P5Jm0alxCs3K+rJ/ma4psYJlqO4JYSV+PSlLBjhguoFzj169HCDfS9x18blET5H+6NojlpVYTXp90VKSiMuPOp6QVpYOkUF903GKPmsitLW3aebFJ++a9lll3WuvF54N7H1AEq18HnCi3lGCrVrtN46FgEREIFyEcj3HsPKnK/CegUT+WPBzniOxctCQh/OPoEsMJIOiqk0Uk3jgzT1bYxxFm3dwprO08QO23C2axx1mDpjljVF81RfiVz66bDxFmwWbp07zGt3Bvs0Hb3p/xZ0GpBFfYvW2K4rq7tcGhgomVhNXmuttVx0BoyYurOaKBGBYglgsRRWQLEHE3t/edcoXOMYzPOiQRikB18JymbDxrfeZ5uT7CHC/eg/dZ0U7hPiU6xYV5EWLzasqvIpxoqtY2OIz2Qft1hvIYZpcvv27d1Enh9WjEw+ESwZgy/51alWPob0GbjdMLlCUBAEX7DKu+cVZcG6gIkte8GwB0rY8i2ccVL7NrTsdSqpE7EEaFP2wmHVkl/USo1BIy6JDC69Gyqu1rgv5VulJCP6B9qea7Cuw70KF6nGrGAqF6tow6Aspz9dcsm/BnM+Dv1c8LUzt79dWFAGsxebf1YJw7UZyzHc6pB81+YkFHNAW7I/EeMHL6xUk1dYqRVz6Rw5labulNVPkJLiY33JPiLhHwpWmHsFUzi9tM9IoXadI6CUiQiIQM0TSHqPoehnLPfdd99lWeEuhxXmKqusksgPlzn6RyzbcZmPk2ocH8TVs5rOrb1sO+cq98pXs71R2AXjmleH2R3BBuBphWtvfvPHbPQ2rZrZL2OnuuMpQdrXvjbMTv5nZzt+80724oDRzqIJCcdLm1etxSurJVMamKy28cD7ASfKJqwFMFuUiECxBJgAHXrooe7rcSgyUEbwFR6/6TYDbyYmuMhgtcIEp2fPnm7CiWDxcvnll7twlBysVrP/k/8CUFK4Ly9uWbh+8tLCgqZXr17FVqVRx2d1HyUTGzTCGesC2sN/EYl9VILPZdsdd9zhXEuIi2VCWPIxpL9g4sr1WK1hEUW/8a9//SuWGav/KLu4B/gaFfmgaMQSyrvL+gvTtG9Dyh5bQJ2sQwBl0b333uvOc2+EhcEi1jS0H1ZOKBS8S+p//vOfvANI0gg+Z+x+CG6yfFwCU/vGLKVgxXPKs+GV8TynKN5YNfZKEPpCJOpOzDkUfKz6eutRz5O4uHehBL722mtd/4riHoUJFo2FriUsqVw8017BjDU0ZaZ9URzObUlTd/bqeyvYbBxLvTTxk+oUTo+4aZ6RQu2alJ/Cq5dA0rNXvTVXzcpFoNA9xQbeSe983vv8GNfz/sYCnoXjNB/vYJGRL5oW+qpcNY4PytWWlZIu+zFdsNNy7gt0D7z/i02fOctW79TWDly3Y7aIB9/1pU0MNv3OBP8hR9z7lVv0X27R+eyinZezz3780975/g87cpPZFkpbrdjBznpykH05YoKNCb5qt2ngeocVE8Im4le/MtRu3m8FC8fba63Fbc3ObSsFS8WUo0kwqJxNvWKKpIKIQMMJoHhg8Iw5bZwFEdYMPjzOioFVFRQTWN+wwhyVQuFYXdxwww2GuxgKjVpzkwuzQsnGSjkTqOjXnmgjJrZxfNIwpOtCWcRgo5B7DBsCo0jcaqutskXDv59BDV8TiZNC7Uv8hpY9Lk+dqx8BVjN5zvI96/VLtTqvKhcrrGkY/NPn5RO+zIkFGe0U7nPTXJsvTX+e9ueZRNlYjMAD62k+HhDeAy5NGijW7r///jpf0ou7Nl/d4+Jyrtj4+dLx58vV7kn5KlwEREAESk2A/oyFS8bn0b3ySp2X0mscBFBk4NI2X4um7tdQmTRtpo0P9ntqv0ALa940v19c2ngNLU9jvX6uWzI1VnAqd2UTQKER9/UIX2omFNENwMM1YhLUkHDSIo9iJy6VTbX40jEAYPUoTmijOAVTOG4hhigPC7WRT4eNe9kInj3fGJSw1xMuNlhR5pOk9m9o2fPlq/PFE0DBWEjJWHyK1XtFOVjh9oq1YiEFE0R5/qKS9troddHjuI8JROPkO8Y1vz5rbfRdWFumkbi6F7qu2PiF0iKsHO2elKfCRUAERKAcBNSflYNq404TNVCHQCFUKkmrrEobr1TlamzpyJKpsbWYylvxBPr16+fcNbCwkdSPQCkZYrXGJsNffhmYzAYWD7QLk0Msm8rxtbdSlr1+9HSVCMw5AnwSGmVv1FUuTQkacm2a9BVHBERABERABERABERgzhOQkmnOM1eOIiACIiACIiACIiACIiACIiACIiACIlB1BOb61+WqjqgqJAIiIAIiIAIiIAIiIAg4hmYAACAASURBVAIiIAIiIAIiIAI1SEBKphpsdFVZBERABERABERABERABERABERABERABEpNQEqmUhNVeiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQgwSkZKrBRleVRUAEREAEREAEREAEREAEREAEREAERKDUBKRkKjVRpScCIiACIiACIiACIiACIiACIiACIiACNUhASqYabHRVWQREQAREQAREQAREQAREQAREQAREQARKTUBKplITVXoiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUIMEpGSqwUZXlUVABERABERABERABERABERABERABESg1ASkZCo1UaUnAiIgAiIgAiIgAiIgAiIgAiIgAiIgAjVIQEqmGmx0VVkEREAEREAEREAEREAEREAEREAEREAESk2gWUMSHDJkSEMu17UiIAIiIAIiIAIiIAIiIAIiIAIiIAIiIAJzmECXLl3KkmOTTCBlSVmJioAIiIAIiIAIiIAIiIAIiIAIiIAIiIAI1AwBucvVTFOroiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQPgJSMpWPrVIWAREQAREQAREQAREQAREQAREQAREQgZohICVTzTS1KioCIiACIiACIiACIiACIiACIiACIiAC5SMgJVP52CplERABERABERABERABERABERABERABEagZAlIy1UxTq6IiIAIiIAIiIAIiIAIiIAIiIAIiIAIiUD4CUjKVj61SFgEREAEREAEREAEREAEREAEREAEREIGaISAlU800tSoqAiIgAiIgAiIgAiIgAiIgAiIgAiIgAuUjICVT+dgqZREQAREQAREQAREQAREQAREQAREQARGoGQJSMtVMU6uiIiACIiACIiACIiACIiACIiACIiACIlA+AlIylY+tUhYBERABERABEagiAj/++GMV1UZVEQEREAEREAEREIHSE2hW+iSVogiIgAiIgAiIgAhUDoHHHnvMRo0aZc2apRv2TJs2zTbYYANbeeWVs5X4+uuv7ZBDDrHnn3/eFlpoocqpnEoiAiIgAiIgAiIgAhVEIN1oq4IKrKLUNoFZs2bZZZddZieeeKLNO++8JYHx3nvv2ZgxY2y77bYrSXpKRAREoDQE+vbta2+88YaNHTvWOnfubPvss4916NAhm3j//v3txRdftEmTJtnyyy/vwtu0aROb+S233GK///67C2vSpIm1bt3a1l13XVtttdVi4ze2k0ksPvjgA3vqqads6tSp1qNHD9t9993rKFzGjx9vt912mx155JE2//zzZxFcffXVNmXKlDpItthiC1tjjTXqnJ88ebLddddddtRRR7mwpHYMJxC9lrB85XrhhRfs888/r5P/ySefbC1btsw5j1KI90fTpk2z52fOnGlXXHGFnXbaaTbPPLmG3YRF3zFPPvmk7bjjjkUpmIqpezGsvv32W3v88cfde2ullVaqw8CfKNTuxbZr3kwUULUE8j17VVthVazsBArdU4XeY/TfL7/8svXr188mTpxonTp1sj333NOWWGKJ2DLfdNNN9ueffxrvg+jiAuP+N99807beemtbddVVrdrHB7GAKvzkjJkZ6933Jxs8erJt9vf2NmzMZNu6ewfr1H5eu/udEbblPzrYEu1y3/P5qvT+kLH2+tdjbNL0WdZ14fls1x6LWutW+VUgmQzjxHyp/XU+bbzklKozhtzlqrNdq7ZWmeCJfuKJJ9xEqVTCYP3jjz8uVXJKpxEQGDdunMntpbIbikFfr169nCLo4IMPNixL9thjDxs9erQr+H333WcXXHCBU3LstddeNnz4cNttt93s119/ja3YSy+95JRL3bt3txVXXNEpFU444QSnAGnsksQCRd35559vm266qWP07rvv2hlnnJFTbax8jjnmGHvooYdyFEr0uYsvvrgts8wy2d9iiy1m8Gzbtm0sOpQfflCf1I7RBMLXEpavXIQx2WjevLl17do159eiRYtosq7uKNZ22WWX7G+nnXZy8Xr27JlznjjERXHpZcSIEc6CCXZ777137I/788EHH8xeU2zd08afPn26XXzxxa7+w4YNq1NXf6JQu9enXfNmpICqJFDo2avKCqtSZSdQ6J5Keo9ddNFF1qdPH9t2223du4p+n7FBvrEcC1DPPfec6yejcvvtt7t32JAhQ1xQNY8PonVvLMfP/3e0DRgxwY7cZClbo3Mbmz5zls0KlD/I6wPH2O8Tp6eqyiMfjbQrXxpqq3ZqY7ustqj9PHaKHXzXlzb6z2mx15/39Pf24pezx5mxEf53Mm28QmlUfVgw0JijEkwAXH7BxD7zySefZGbMmJHNP7AmySkLx4Hmuk75wmkEA6w64dETxcaPXq/jyiHA/bL66qtn/vjjj0ww6M98+OGHmWBFo04BJ0yYkPniiy9ceKBQqBPOvfXRRx+5dIIV98y5556bE4c0P/vss8zAgQPrXMuJQuHBJDgTrIJnuO/Ig7LUqvz000+ZYMUoE7zIcxDAJvxsB6tNGX5e0jAMt0G0n4h75ocOHZoJVvUz9Bk77LBD5uabb3bZxcUt1L6lKHut3g9p6017XnrppZlg8JhzSbBqmXnkkUfc8xconzJfffVVTvhBBx2UbddoXoEFSiZYBc05fe2112ZOP/30aNRGdZzEgr5o5513zgQD7Wy9AsuvTGCF5J4H5Nlnn81stdVWmddee831r7/99ltBBmeffXYmmBDExgkWAFx+9LtJ7RhNIHxtmnIdffTRde6BaJqFjsmP+v7888+FomUCBWeGe+vOO+/MBKvw7vf6669nDjvssOwx5wKLu+z7KE3dYRRMulzeaeL7Ql5//fWZe+65J7PvvvtmnnnmmWzZw+mlafdopQu1azSujqubQLF9QnXTUO1KQaDQPZX0HqN/XHPNNTOffvppTlGCxZPM/fffH1u8wMozc84552QCz4ec8GBBKsNYgv4zcKN2YdU6PogF0whOjpkwLXPZC0MyN70xLDNq/NTMzKD9OTd9xmydwL69v8gMGP7XnGHStJnu+LuREzNhrQHnt/7Px5lvfsmdhx3zwNeZu/oPr0Ni2G+TMif0GZi5990RmR9GT8qMnzzd/bxMmT4zM27S9Ew0Xp2EdMIRmOOWTKwcsjcCWujDDz/cmSsirFJjhu61ypjMB4M6t/IclXAaaSxQio0fzU/HlUfg6aeftvPOO8+tarDqjLubFyydWFEmDivPhAcvpmw45/bbbz/D1eLf//53ThiRsGzgelbUL7nkEnefhl1FksJZ5X7ggQeclQTmutzX33//feVBLHOJcGs87rjjnHnzKaec4lgHAwX3rG+zzTYWKN+yJWBViZ+XJIZYE2AmTVvDmH1ScJnyEn7mA0Wfs9ogf+6JAw44wN0TRxxxhIse7R8KtW8pyp4tpP7IS4B+P1D+2FJLLZWNA3vc5hZddFHnCnXNNdfYCiuskJMGFjZxbl35MgqUzLbIIovkC24U55NYBIo4Z/21zjrrZOuDG9jGG29sr776qjvH6vKtt95qwSA+sc6sCv/www/ONTFOeMY22WQT57aY1I7R68PXpikXfQh1oY+h/8Byhz6mWKE/wE0wWMSocynpBYsQzs2OvgM3S36tWrVy1lr+mH+x7JpvvvlcGmnqjrsalmVp4xOPfaFwgYvjH04vTbuHK5vUruG4+rv6CRTTJ1Q/DdWwFAQK3VNJ7zH6U9zjeGcFc1dXnJEjR7rxe5cuXfIWD6snxoveVZ6IzAEYgyZJNYwPkupYqeG3vPWTfTx0nPX/fqxd+sIQZ7V0fJ+B9s3IiXWK/OEP4+zQu7+0574YZXf2H27HPTjQAuWSi9eiaRO7uOdy9rfF/nL/5/yibVrYlMB1Lip3BW54P/4+xfp+94fd0W+4Dfp1kh1wxwAbP3n22OCCZwbbx8PGWTReNB0dzyaQ3yGxTIToHOgUMGHELP+dd96xzTff3O2rgAk4Ax06DAZRwQpjbCnCacSZxUcvKjZ+9HodVx4BXlZMChAUlkwyUEwg+HQHVirZCSrKoocfftjtvcKL5sorr7RgRdrdZ0xcDzzwwOweG7hRnXXWWW4CS3wmGMcee6zbX4R9SpLCPSmUpSiaeDGSH4N/lCG1IkxqUSYzIFhwwQXds33VVVe5yWzaDXPzMUTRgALCtxFMUTjSRoFlg0McfuZRRPMLVtGccoK+BVeT/fffv05clNvbb7993vZP2375yp72esWbTQC32MByyWiX999/3w0MN9xwQxcY3QuI+4LBJM9bPmFRI7Cuc/fjoEGDjH13UIA2ZkH5UYgFbl4LL7xwzl5E1JcB+9tvv+2qjssBwv4VhYTnKrCicc9Z3AIQShr6Wt83+7QKtaOPE3dtUrkoL30Bbm0oJO+++2638EBfixtdWrnxxhsNV4y33nrL9Q3s/+XluuuuM1yqUWJF921Kk36hujP2CbvkkV6h+LyvcHv0Sq9o/uH00rS7vz6pXaP56Lj6CSQ9e9VPQDUsNYFC91TSe4yy0EefeeaZzpWZ/h5FOouF4QWUaJlx9ebjDX5xmb4ONzreUa+88kpO9GocH0R5NJbjM7btYr1eHmqLtW1h+64dv+cWdRkXKH8ufHawUySttGRrV73LX/zB+nzwix2ywZLWdJ4mturSuft0cg2KqfN37FoHx7k7dLUznxhk6y3XzrbpvrAL77FMW7st2BtqtcDdDruXTbu1d79ovDqJ6YSV1ZKJAZH/edYM6nfddVdDOcSXW1Ay8dAzOcB6xO+PgbJp/fXXz15POnFpRPOIHnNNOM9oePRY90TjIBC4O2ULil924O6QPUahw2QgcP1wli5M+H/55RcXjoITywW/8sF9yJ4vXlBALLDAAtnNgEmHlRBWyJGkcJ8OK+N+Esb1KDlKuY9UtsAV+gcr+lgyYM3Es+0ng1iapJV8DOkbsF7AYoW0+bEZdNjvPvzMM3mlLH4jYNofZRf9DhKOm7Z9k+qQr+xJ1ym8LgEUQrQ17fjNN9/krEj62IGpvbNUy7cRtY/H8869w/3AZqGshAZulHUzbcRnoiyw8Itugk31YFGM1RfXoMCnHbyiL4oJ69C11147VpGc1I6Fro3m449Rrh1//PF24YUXOotTFEHUFwV3McLG2Sin2AAW5TOLFl7YGJb7BeUlFpH+h0ILC9XwOf4+9dRTHaew5Ks7Yxy/OJImPns2UeeoBZ+/NpxeMe2e1K7FsFRcERABEWgogeh7jPSwLEIZhYIJS1L6uGBLjBwr9rh8+TgCi4wIBg28+1l4iUotjA+idW7sx+8PHmutms9jUwOrpI8CxRG/9gs0t/eC83GChdO5wZ5LG/9toTrKp7j4nDsq2BOq/6Cxdnvf4XbCFp3yRdP5GAJltWRiM1aEToHVaC/+SwCsFmJaHux74zoKrE9wgaEjYdX6pJNOchu6FkojGh49juYZDY8eZwupPyqaQNjFhRdDWAnJfcRXlFjVZRUDZY93g0C5EHWPQakU7EHi6stXL6KWNu3atcu64yWFe2hhCzuuxyKKl2bcZK+iQdezcNSfCRETN77exKbMbLiMAjD81SqfPAqfqGVEPob0Dyj/gj3dckq35ZZb5hz7foZJGW4tlIMyPProo86FMZyfj5u2fcMZFVP2Wmn/et42dS6Dl1/95BnC6gjFJW3pBSURCiZWM3FRLSTrrbeehe+TYD8bZ7nIV8OqQeJY0N+F3Yl9PbE2LEbpy3VsjooiI/qsEkb7YL2JpVNUktqx0LXRtMLHWDGFhT5jo402smA/vuzYodD10Wu5j6hf+AuFTGj4mmn060QDBgxwLtfBvh45WaC05r3jJanu0fLli4/yC3dC+HrFKAsXvLvY+HbppZfOSaqYdi/UrtHy6VgEREAEykkg7j2GNSlfAWVc2a1bN5c9fR9fjuMDIIwL8slmm23mxgxYPmHRxMJvnFT7+CCuzo393NjAKgnros9/yrXC3qTbQnWqhhscCqY1lmljR26c+76sEzl0ot18zW3lpVrbt4Gr3vwty6o2KVSMRhlWVlq4KcVJ2OQcayasTdBKY/3ARKF3797WsWNHNxlNSiMaHj32+fs8o+HR47jy6lzlEYib5FBKLBNwhWMw7hUHTAT8nkzeiiVco/AEjEmX/3qVj0OafjKWFO6vQVnhhfSZ/OA2VkuyTPA1Ktw6kGCzbKcI4MtLuB3SfqzueyE8OuHNx5B4KK5xY/TCZCvqyuKPGYjAH+Xh4MGDnaUCE9Gw+LhJ7ctEsyFlz8lUB3kJ8Ayy0IDrohfaqEePHm6Q6AULQwaPLEhElYx5Ew8FeCtIlBzR+yfN9ZUUJx8L3H5RcPMVMlzkvLC3D/syFSPsb4ZrapxgOYpbQliJn7Yd466NyyN8jjqhaI5aVWE16fdFSkojLjzqekFaWDpFBfdMxij5rIrS1t2nmxSfvmvZZZd1rrxeeDex9QBKtfB5wotp90LtGq23jkVABESgXATyvcewMuersF7BRP5YsDOeY/GykNCHs08gC4ykg2IqjVTT+CBNfRtjnEVbt3AucYdtuGS2+FNnzLKmaJ5Cwh5LN7w+LPhS3dIWp4DKiRzZCvrTYeMt2HTcOneY1+4M9mk6etP/KajqbhndGBGWtcxldZdLU3KUTKwmr7XWWi46A0ZM3VlNlIhAsQSwWAoroNiDib2/vGsUrnEM5nnRIAzSg68EZbNh41vvs81J9oLhfvSfuk4K9wnxKVasq0iLFxtWVfkUY8XWsTHEZwKLW6y3EMM0uX379m4izw8rRpQICJaMwZf86lQrH0P6DNx8mFwhKAiCL5Hl3fOKsmBdgIKCPX3YAyVs+RbOOKl9G1r2OpXUiVgCKBHZw8u3MZFwicXiCHcs2py9cljV5JdWwUT/QNujlMS6DvcqXKQas4IpiQUDbNw3GYh7l13c0nH1yreiG9coKMvpT5dc8q/BnI9HPxd87cztbxeWpHYkbr5r48oQPkdbsj8R4wcvrFRzz4SVk0nplCs8Td0pq58gJcXH+pJ9RMI/lIYw9wqmcHpp271Qu5aLjdIVAREQgTCBpPcYin7Gct999132MtzlsMJcZZVVEmHiMkf/iGU7LvNxUo3jg7h6VtO5tZdt51zlXvlqtjcKu2Bc8+owuyPYABwJvjQX7Kc03O55d4T12qNbrIKJa29+88csljatmtkvY6e6YzYHv/a1YXbyPzvb8Zt3shcHjHYWTUg4XvZi/ZFDoKyWTGlYs9rGA8/EAUHZhLUAZosSESiWABOgQw891H09DkUGygi+wuM33WbgzcQEFxmsVpjg9OzZ0004ESxeLr/8cheOkoPVavZ/8l8ASgr35cUtC9dPXlpY0PTq1avYqjTq+Kzuo2Rig0Y4Y11Ae/gvIrGPSvC5bLvjjjucawlxsUwISz6G9BcoILgeqzUsoug3/vWvf8UyY/UfZRf3AF+jIh8UjVhCeXdZf2Ga9m1I2WMLqJN1CPDM4BaE8vDaa691zyUKXybaWMKhILn33nvdddw7YWEwmc/aJvicsfFDcJPl4xKY2jdmScOCex2LL5Qv3n33P//5T3awzXPKs+GV8TynKN5YNfZKEPpCJOpOzDmUVqz6eutRzzOpHQtdS1hSuXimvYIZa2jKTPuiOJzbkqbu7NX3VrDZOJZ4aeIn1SmcHnGT2p04hdo1KT+FVy+BpGevemuumpWLQKF7ig28k97pvNf5Ma7n/Y0FPAvHaT7ewSIjX6Yt9FW5ahwflKstKyVd9mO6YKfl3BfoHnj/F5s+c5at3qmtHbhuR1fEIaMn28Mfzt6T96A7B+QUe8t/dLDTtu5sn/34p73z/R/OygnZasUOdtaTg+zLERNsTPBVu00D1zusmJB9gk3Ir35lqN283wo58fZaa3Fbs3PbnPR1EHxlNxhUzt79VjREoIoIoHhg8Iw5bZwFEdYMPjzOioFVFRQTWN+wwhyVQuFYVdxwww2GuxgKjVpzkwuzQsnGSjkTqOjXnmgjJrZxfNIwpOtCWcRgo5B7DBsCo0jcaqutskXDv59BDV8TiZNC7Uv8hpY9Lk+diyfAFx2xwOFZjntW46/S2TgCrPzSJ+XrF+OuSXMOaxoG//R5+SRfO6a5Nl+a/jx14plEgVaMwAPraT4eEN4DLk0aKNbuv//+Ol/Si7s2X93j4nKu2Pj50vHny9XuSfkqXAREQARKTYD+jIVLxufRvfJKnZfSaxwEUGTg0jZfi6bu11Bhg/DxwX5P7RdoYc2b5veLSxuvoeVprNfPdUumxgpO5a5sAig04r4e4UvNhCK6AXi4RkxmGxJOWuRR7MSlsqkWXzoGAKwexQltFKdgCsctxBDlYaE28umwcS8bwbPnG4MS9nrCxQYrynyS1P4NLXu+fHW+LgHaTVIaAihjCylk65MLbq9YKxZSMJFuXDumvTapXHEfE0i6xofjml+ftTb6Lqwt00hc3QtdV2z8QmkRVo52T8pT4SIgAiJQDgLqz8pBtXGniRqoQ6AQKpWkVValjVeqcjW2dGTJ1NhaTOWteAL9+vVz7hpY2EjqR6CUDLFaY7PoL7/80llx0C5MDrFsKsfX3kpZ9vrR01UiMOcI8ElolL1RV7k0JWjItWnSVxwREAEREAEREAEREIE5T0BKpjnPXDmKgAiIgAiIgAiIgAiIgAiIgAiIgAiIQNURmOtfl6s6oqqQCIiACIiACIiACIiACIiACIiACIiACNQgASmZarDRVWUREAEREAEREAEREAEREAEREAEREAERKDUBKZlKTVTpiYAIiIAIiIAIiIAIiIAIiIAIiIAIiEANEpCSqQYbXVUWAREQAREQAREQAREQAREQAREQAREQgVITkJKp1ESVngiIgAiIgAiIgAiIgAiIgAiIgAiIgAjUIAEpmWqw0VVlERABERABERABERABERABERABERABESg1ASmZSk1U6YmACIiACIiACIiACIiACIiACIiACIhADRKQkqkGG11VFgEREAEREAEREAEREAEREAEREAEREIFSE5CSqdRElZ4IiIAIiIAIiIAIiIAIiIAIiIAIiIAI1CABKZlqsNFVZREQAREQAREQAREQAREQAREQAREQAREoNYFmDUlwyJAhDblc14qACIiACIiACIiACIiACIiACIiACIiACMxhAl26dClLjk0ygZQlZSUqAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiJQMwTkLlczTa2KioAIiIAIiIAIiIAIiIAIiIAIiIAIiED5CEjJVD62SlkEREAEREAEREAEREAEREAEREAEREAEaoaAlEw109SqqAiIgAiIgAiIgAiIgAiIgAiIgAiIgAiUj4CUTOVjq5RFQAREQAREQAREQAREQAREQAREQAREoGYISMlUM02tioqACIiACIiACIiACIiACIiACIiACIhA+QhIyVQ+tkpZBERABERABERABERABERABERABERABGqGgJRMNdPUqqgIiIAIiIAIiIAIiIAIiIAIiIAIiIAIlI+AlEzlY6uURUAEREAEREAEREAEREAEREAEREAERKBmCEjJVDNNrYqKgAiIgAiIgAiIgAiIgAiIgAiIgAiIQPkISMlUPrZKWQREQAREQAREoIoI/Pjjj1VUG1VFBERABERABERABEpPoFnpk1SKIiACIiACIiACIlA5BB577DEbNWqUNWuWbtgzbdo022CDDWzllVfOVuLrr7+2Qw45xJ5//nlbaKGFKqdyKokIiIAIiIAIiIAIVBCBdKOtCiqwilLbBGbNmmWXXXaZnXjiiTbvvPOWBMZ7771nY8aMse22264k6SkRERCB0hDo27evvfHGGzZ27Fjr3Lmz7bPPPtahQ4ds4h988IE99dRTNnXqVOvRo4ftvvvueZUIt9xyi/3+++/u2iZNmljr1q1t3XXXtdVWW600hZ3LqfTv399efPFFmzRpki2//PKOVZs2bYpiNX78eLvtttvsyCOPtPnnnz977dVXX21TpkypU8MtttjC1lhjjTrnJ0+ebHfddZcdddRRLiypHcMJRK8lLF+5XnjhBfv888/r5H/yySdby5Ytc86jFOL90bRp0+z5mTNn2hVXXGGnnXaazTNPrmE3YdF3zJNPPmk77rhjUQqmYupeDKtvv/3WHn/8cffeWmmlleow8CcKPSPFtmveTBRQtQTyPXtVW2FVrOwECt1Thd5j9N8vv/yy9evXzyZOnGidOnWyPffc05ZYYonYMt900032559/Gu+D6OIC4/4333zTtt56a1t11VWt2scHsYAq/OSMmRnr3fcnGzx6sm329/Y2bMxk27p7B+vUfl67+50RtuU/OtgS7XLf8/mq9O7gsdbvuz9s/OQZtnT7VrZrj8Ws/fzN80W3TIZxYt7gbEDaeMkpVWcMuctVZ7tWba0ywRP9xBNPuEllqYTB+scff1yq5JROIyAwbtw4k9tLZTcUg75evXo5RdDBBx9sWJbsscceNnr0aFdwlE/nn3++bbrpprbbbrvZu+++a2eccUbeSr300ktOudS9e3dbccUVnVLhhBNOcAqQxi733XefXXDBBU7hs9dee9nw4cMdk19//TU1K6x8jjnmGHvooYdyFEr0uYsvvrgts8wy2d9iiy1m8Gzbtm0sOpQfflCf1I7RBMLXEpavXIQx2WjevLl17do159eiRYtosu4+QQm5yy67ZH877bSTi9ezZ8+c88QhLso6LyNGjHAWTNxne++9d+yP+/PBBx/MXlNs3dPGnz59ul188cWu/sOGDatTV3+i0DNSn3bNm5ECqpJAoWevKiusSpWdQKF7Kuk9dtFFF1mfPn1s2223de8q+n3GBvnGciy6PPfcc66fjMrtt9/u3mFDhgxxQdU8PojWvbEcP//f0TZgxAQ7cpOlbI3ObWz6zFk2K1D+IK8PHGO/T5yeqioopG5840dbs3Nb23vtxYN0Mnbo3V/amAnx15/39Pf24pezx5mFMkgb9SDnWQAAF2JJREFUr1AaVR8WDDTmqASDXpdfMLHPfPLJJ5kZM2Zk8w+sSXLKwnGgua5TvnAawQCrTnj0RLHxo9fruHIIcL+svvrqmT/++CMTDPozH374YSZY0ahTwAkTJmS++OILFx4oFOqEc2999NFHLp1gxT1z7rnn5sQhzc8++ywzcODAOtdyolB4MAnOBKvgGe478qAstSo//fRTJlgxygQv8hwEsAk/28FqU4aflzQMw20Q7SfinvmhQ4dmglX9DH3GDjvskLn55ptddnFxC7VvKcpeq/dD2nrTnpdeemkmGDzmXBKsWmYeeeQR93ztvPPOmWDwmA0PLHgygWWNa+M4CSxQMsEqaE7Qtddemzn99NPjojeac9yrgSIu89VXX+WU+aCDDnL3eBpWzz77bGarrbbKvPbaa65//e233wrW/+yzz84EE4LYOMECgGsb+t2kdowmEL6WsKRyHX300XXqHU2z0DH5Ud+ff/65ULRMoODMwPPOO+/MBKvw7vf6669nDjvssOwx5wKLu+z7KE3dYRRMulzeaeL7Ql5//fWZe+65J7PvvvtmnnnmmWzZw+mlafdopQu1azSujqubQNKzV921V+3KQaDQPZX0HqN/XHPNNTOffvppTtGChabM/fffH1vcwMozc84552QCz4ec8GARJsNYgv4zcKN2YdU6PogF0whOjpkwLXPZC0MyN70xLDNq/NTMzKD9OTd9xmydwL69v8gMGP7XnGHStJnu+LuREzNhrQF/X/Pq0MzwP6bk1DpQMmWe+my2PiIcMOy3SZkT+gzM3PvuiMwPoydlxk+e7n5epgQaqnGTpmei8RoB0rlSxDluycTKIXsjoIU+/PDDnbkiwio1Zuheq4zJfDCocyvPUQmnkcYCpdj40fx0XHkEnn76aTvvvPPcqgarzri7ecHSiRVl4rDyTHjwYsqGc26//fYzXC3+/e9/54QRCcsGrmdF/ZJLLnH3adhVJCmcVe4HHnjAWUlgrst9/f3331cexDKXCLfG4447zpk3n3LKKY51MFBwz/o222xjgfItWwJWlfh5SWKINQFm0rQ1jNknBTchL+FnPlD0OQsX8ueeOOCAA9w9ccQRR7jo0f6hUPuWouzZQuqPvATo9wPljy211FLZOLDHbW7RRRe1QKHiLJrWWWedbDiuTRtvvLG9+uqredONBgRKZltkkUWipxvVMW5h11xzja2wwgo55cbaiH4rDStWl2+99VYLBvGJdWdV+IcffnDueHHCM7bJJps4V72kdoxeH76WsKRy0YfQ7vQx9B9Y7tDHFCv0B7gJBosYdS4lvWARwrnZ0XfgZsmvVatWzlrLH/Mvll3zzTefSyNN3XFXw+IsbXzisS8ULnBx/MPppWn3cGWT2jUcV39XP4GkZ6/6CaiGpSZQ6J5Keo/Rn+Iex/s9mC27oo0cOdKN37t06ZK3qFg9MV70rvJEZA7AGDRJqmF8kFTHSg2/5a2f7OOh46z/92Pt0heGOKul4/sMtG9GTqxT5A9/GOcsk577YpTd2X+4HffgQAuUTi4eGoTjN+9kHUNudVgyjZs83RZuXdfi+a7A6unH36dY38C17o5+w23Qr5PsgDsGODc75IJnBtvHw8ZZNF6dQumEIzDH92Sic6BTwIQRs/x33nnHNt98c7evAibgDHToMBhEBSuMsc0UTiPOLD56UbHxo9fruPII8LJiUoCgsGSSgWICwac7WMHPTlBRFj388MNu7xVeNFdeeaUFK9LuPmPieuCBB2b32MCN6qyzznKTNuIzwTj22GPd/iLsU5IU7kmhLEXRxIuR/Bj8owypFUEBgDKZAcGCCy7onu2rrrrKTRrTbpibjyGKBhQQvo1gisKRNgosGxzi8DOPIppfsIrm9mmhb8HVZP/9968TF+X29ttvn7f907ZfvrKnvV7xZhPALTawXDLa5f3333cDww033NCZti+88MI5++twBYPQt99+Oy8+FjUC6zp3Pw4aNMjYdwcFaGMWlB/RfZF4RhhY0/fg5pXECpcDhP0rCgnPVWBF456zuAUglDT0tb5v9mnla8dwXnHXJpWL8tIX4NaGQvLuu+92Cw/0tbjRpZUbb7zRcMV46623XN/A/l9errvuOsOlGiVWdN+mNOkXqjtjn7BLHukVis/7ChdRr/SK5h9OL027++uT2jWaj46rn0DSs1f9BFTDUhModE8lvccoC330mWee6VyZ6e9RpLNYGF5sipYZV28+3uAXl+nrcKPjHfXKK6/kRK/G8UGUR2M5PmPbLtbr5aG2WNsWtu/a8XtuUZdxgfLnwmcH28U9l7OVlmztqnf5iz9Ynw9+sUM2WDJb3akzZtnTn42yydNnBsqr8bbFCh1s3WXb1cFx7g5d7cwnBtl6y7Wzbbov7MJ7LNPWbgv2hlqtEwtnZpt2a+9+0Xh1EtMJK6slEwMi//OsGdTvuuuuhnKIL7egZOKhZ0CM9YjfHwNl0/rrr5+9nnTi0ojmET3mmnCe0fDose6JxkEgcHfKFhS/7MDdIXuMQofJQOD64SxdmPD/8ssvLhwFJ5YLfuWD+5A9X7yggFhggQWymwGTDishrJAjSeE+HVbG/SSM61FylHIfqWyBK/QPVvSxZMCaiWfbTwaxrkgr+RjSN2C9gJUGafNjM+iw3334mWfySln8RsC0P8ou+h0kHDdt+ybVIV/Zk65TeF0CKIRoa9rxm2++cYpirNaiGztzJc9z3AbVPlXCuXe4H9gslJXQwI2ybqaN+AwbomK15zflri+rOAQo8GkHFH1xgnXo2muvHatIjmvHcBqFro3Li3Mo144//ni78MILncUpiiDqi4K7GGHjbJRTbACL8plFCy9sDMv9gsIOi0j/Q6GFhWr4HH+feuqpbqEjLPnqzhjHL46kic+eTdQ5arXmrw2nV0y7J7VrMSwVVwREQAQaSiD6HiM9LItQRqFgwpKUPi7YEiPHij0uXz6OwCIjgkED734WXqJSC+ODaJ0b+/H7wYberZrPY1Onz7KPAosmfu0XaG7vBeejwkbixJsZbOw06NeJNnZS/J5M0euOCvaE6j9orN3ed7idsEWnaLCOCxAoqyUTG5AidAqsRnvxXwJgtRDT8mDfG9dRYH2CCwwdCavWJ510ktvEtFAa0fDocTTPaHj0OFtI/VHRBMIuLrwYwkpI7iO+OMWqLqsYKHu8GwTKhah7DEqlYA8SV1++ehG1tGnXrl3WHS8p3EMLW9hxPRZRvDTjJsYVDbqehaP+TIiYuPH1JjYiZsNlFIDhr1b55FH4RC0j8jGkf0D5F+zpllO6LbfcMufY9zNMynBroRyU4dFHH3UujOH8fNy07RvOqJiy10r71/O2qXMZvPzqJ88QVkcoLlEyh11k/YVY0BVSZK633noWvk+C/Wyc5SJfDasGQWGGgomVXdx1Efq7+rCK44EFGYqM6LNKXNoH600snaKSrx15JpOujaYVPsaKKSz0GRtttJEF+/Flxw6Fro9eCzvqF/4qHxMavmYa/TrRgAEDnMt1sK9HThYorXnveEmqe7R8+eKj/MKdEL5eMcrCBe8uNr5deumlc5Iqpt0LtWu0fDoWAREQgXISiHuPYU3KV0AZV3br1s1lT9/Hl+P46AXjgnyy2WabufEflk9YNLHwGyfVPj6Iq3NjPzc2sGTCuujzn3KtsDfptlBO1Vo2m8dt+o2wvnz2U4PsmleH2Xk7dk1E0G6+5rbyUq3t28BVb/6WZVWbJJalsUUoKy3clOIkbHKONRPWJmilsX5gcNy7d2/r2LGjm4wmpRENjx77/H2e0fDocVx5da7yCMRNcigllgm4wjEY94oDJgJ+TyZvxRKuUXgCxgTVf73KxyFNP3FNCvfXoKzwQvpMfnAbqyVZJvgaFW4dSLBZtpv88uUl3A5pP1b3vRAeVQ7kY0g8FNe4MXphshV1ZfHHDETgj/Jw8ODBzlKBiWhYfNyk9mWi2ZCy52Sqg7wEeAZZaMB10Qtt1KNHDzdIxJUVpS1f1sJFzgv71bAvU1rxVpAoSKL3T9o0KiUe1pYMpFmcCSvSSsWKerK/Ga6pcYLlKG4JYSV+Ujv6dOKujcsjfI72R9EctarCatLvi5SURlx41PWCtLB0igouiYxR8lkVpa27TzcpPn3Xsssu61x5vfBuYusBlGrh84QX0+6F2jVabx2LgAiIQLkI5HuPYWXOV2G9gon8sWBnPMfiZSGhD2efQBYYSQfFVBqppvFBmvo2xjiLBvsqNZ2niR22Ya5rXFM0T4HwBTn2dvrnih2y1SNo1aXb2CtfzTYuqFPv2ZdmT386bHyQzjTr3GFeuzPYp+noTf+3oBOJVycdnSivu1waviiZWE1ea621XHQGjJi6s5ooEYFiCWCxFFZA4VrD3l/eNQrXOAbzvGgQBunBV4Ky2bDxrffZ5iR7wXA/+k9dJ4X7hPgUK9ZVpMWLDauqfIqxYuvYGOIz2cct1luIYZrcvn17N5HnhxUjSgQES8bgS351qpWPIX0GLlFMrhAUBMGXyPLueUVZsC5AQcGePuyBErZ8C2ec1L4NLXudSupELAGUiOzh5duYSLjEYnGEOxaDRlwSGVx6N1RcrXFfyrdKSRr0D7Q912Bdh3sVLlKNWcHE/c++Qazw8ota9NWXVbRhUJbTny655F+DOR+Hfi742pnb3y4sSe1I3HzXRvOPHtOW7E/E+MELK9XcM2HlZPS6OXWcpu6U1U+QkuJjfck+IuEfClaYewVTOL207V6oXecUK+UjAiJQ2wSS3mMo+hnLfffdd1lQuMthhbnKKqskwsNljv4Ry3Zc5uOkGscHcfWspnNrB/sq4QLnFUZYKWGhdEewATgSTDfsxjd/zFEojRw31Z77//buHcSOKgAD8JiY4IuImkYsJIUWgpWgIDbauHYSbEQEhYXF2tbKykBwWVgIFmmWtbYUxEIJgp2g22nhA0kRRFERjUScf9YJ1915bc7e7O7NdyCgd2bOzP3mzN2Zf86Z+fJK86yllCx7oZ6nLafuuL26/Mtfzf/+Wde99vF31ZvPn2keIP7hV1eaHk0ps/NdX9h//E9grj2ZpljnblsO+Fw4pCRsSm+BdFtUCOxVIBdAy8vLzdvjEmQkjMhbeNqHbufEOxcmGSKTXiu5wDl79mxzwZmSHi/nzp1rpifkyN3qDM1p3wA0Nr3d3gzLytDP/NFKD5rz58/v9asc6flzdz8hUx7QGOf0Lsj+aN+IlOeo1K/Lri5evNgMLcm86ZkwW/oM83uRACLLp9daekTld2NlZaXTLHf/E3alDeRtVFlPgsb0hGqHy7YLTtm/JdveuYE+3CWQYybDghIerq2tNcdlAt9caKcnXEr2X3ruJFBoh6Surq72nkBmmfp1xs2/lAyTzcsl0tX+KJcEaxsbG81XyHE0W3JinZ5HY1Y5TnNstGF8jtMEb7lr3IYg+S1M2TmcOJ8l4Mtd37b3aLsNU/Zj37KpY2y7cky3AXN6Q2ebs38THB50mfLd86y+T+qHjaf32ZT5x77TbH2Zd2y/Z56h/Tq2PtMXV2Ds2Fvcb+6bzUtgqE3lAd5jf8fytyz/cl6fv9/pAZ8bx1Ne3pGbjHkz7dBb5Rbx/GBe+/Kw1JvnMb394iPNG+je//xy9fe1f6onHr63eu3ph5pNvK8e6vbOS49Wa3Xw9N6nP1Qnjh9rgqMXHj9dvf7M9jxffP9b9dk3P1dvPLvdQ2mp7vX01gdfV1s//l79VL/V7rl66F16MaW8Uj+E/N2Pvq0uvPpYNTvfy089WD15Zju0Oiw2h2E7bqtPKreffnsYtsY2ENgngQQPOXlOd9quHkTpzdBO7+rFkLsqCSbS+yZ3mHeWoenpSbC+vl5luFgCjVttmNysVUK23CnPBdTOtz1lH+XCtstnimF+uhIW5WRjaHhMHgicIHFpaen6pmV8f05q8jaRrjK0fzN/6bZ3rdNn3QJ5o2N6HuVY7jpWczczx1nfsd5d66356bys0psmJ//5zesrfftxyrJ9dbafZ//nmEzYuJcSj/SezssDZp8BN6WOhGObm5u73qTXtWzfd++aN5/tdf6+etrP57Xfx9ZrOgECBPZbIL9nuXGZ8/Odz8rb73Wp72gIJMjIkLa7Th5v/nWVX+vnN12tQ6j77z5RHftvOF3XfPnsj6vXqsz/wD0n62Cqf1zc1Pn61rPonx94T6ZFB/b9DkYggUbX2yParckFxc4HgM9uaS5mS6anrqxjrxcuB6M1v7XmBCB3j7pK9lFXwDQ775BhwsOhfdTWkwf35kHweeZbTkryrKcMsUkvyr4ytv9Lt71vvT7fLZD9NlQSMA6FjEPL3mrT5mGVYa/prTgUMMW5az9OXXZsP3W9TGBsmXZ6hubfyL22/Halt+WU0vXdh5bb6/xDdWXaPPb72DpNJ0CAwDwE/J7NQ/Vo15kY6HQdCA2VU3dOjzyGwqrZdUydb2i7FnmankyLvHd9twMRuHTpUjNcIz1slBsT2E/D9FrLw6K3traaHi/ZL7k4TM+mebztbT+3/cb0LEXg5gnkldAJe3cOlZuyBSXLTqnfPAQIECBAgAABAjdfQMh0882tkQABAgQIECBAgAABAgQIECCwcAL1c9cVAgQIECBAgAABAgQIECBAgAABAmUCQqYyP0sTIECAAAECBAgQIECAAAECBAjUAkImzYAAAQIECBAgQIAAAQIECBAgQKBYQMhUTKgCAgQIECBAgAABAgQIECBAgAABIZM2QIAAAQIECBAgQIAAAQIECBAgUCwgZComVAEBAgQIECBAgAABAgQIECBAgICQSRsgQIAAAQIECBAgQIAAAQIECBAoFhAyFROqgAABAgQIECBAgAABAgQIECBAQMikDRAgQIAAAQIECBAgQIAAAQIECBQLCJmKCVVAgAABAgQIECBAgAABAgQIECAgZNIGCBAgQIAAAQIECBAgQIAAAQIEigWETMWEKiBAgAABAgQIECBAgAABAgQIEBAyaQMECBAgQIAAAQIECBAgQIAAAQLFAkKmYkIVECBAgAABAgQIECBAgAABAgQICJm0AQIECBAgQIAAAQIECBAgQIAAgWIBIVMxoQoIECBAgAABAgQIECBAgAABAgSETNoAAQIECBAgQIAAAQIECBAgQIBAsYCQqZhQBQQIECBAgAABAgQIECBAgAABAkImbYAAAQIECBAgQIAAAQIECBAgQKBYQMhUTKgCAgQIECBAgAABAgQIECBAgAABIZM2QIAAAQIECBAgQIAAAQIECBAgUCwgZComVAEBAgQIECBAgAABAgQIECBAgICQSRsgQIAAAQIECBAgQIAAAQIECBAoFhAyFROqgAABAgQIECBAgAABAgQIECBAQMikDRAgQIAAAQIECBAgQIAAAQIECBQLCJmKCVVAgAABAgQIECBAgAABAgQIECAgZNIGCBAgQIAAAQIECBAgQIAAAQIEigWETMWEKiBAgAABAgQIECBAgAABAgQIEBAyaQMECBAgQIAAAQIECBAgQIAAAQLFAkKmYkIVECBAgAABAgQIECBAgAABAgQICJm0AQIECBAgQIAAAQIECBAgQIAAgWIBIVMxoQoIECBAgAABAgQIECBAgAABAgSETNoAAQIECBAgQIAAAQIECBAgQIBAsYCQqZhQBQQIECBAgAABAgQIECBAgAABAkImbYAAAQIECBAgQIAAAQIECBAgQKBYQMhUTKgCAgQIECBAgAABAgQIECBAgAABIZM2QIAAAQIECBAgQIAAAQIECBAgUCwgZComVAEBAgQIECBAgAABAgQIECBAgICQSRsgQIAAAQIECBAgQIAAAQIECBAoFhAyFROqgAABAgQIECBAgAABAgQIECBAQMikDRAgQIAAAQIECBAgQIAAAQIECBQLCJmKCVVAgAABAgQIECBAgAABAgQIECAgZNIGCBAgQIAAAQIECBAgQIAAAQIEigWETMWEKiBAgAABAgQIECBAgAABAgQIEPgXFfc72OtFFmMAAAAASUVORK5CYII=" alt="" />


 import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class InvertedIndex{
private static class Map extends Mapper<Object, Text, Text, Text>{
private Text keyInfo =new Text(); //存单词与uri
private Text valueInfo =new Text(); //存词频
private FileSplit split; //存储split对象
@Override
protected void map(Object key, Text value, Mapper<Object, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
split=(FileSplit) context.getInputSplit();
StringTokenizer itr=new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
int splitIndex=split.getPath().toString().indexOf("file");
keyInfo.set(itr.nextToken()+":"+split.getPath().toString().substring(splitIndex));
valueInfo.set("1");
context.write(keyInfo, valueInfo);
}
}
} public static class Combine extends Reducer<Text, Text, Text, Text>{ //相同的key,value累加
private Text info=new Text();
@Override
protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
int sum=0;
for(Text value:values){
sum+=Integer.parseInt(value.toString());
}
int splitIndex=key.toString().indexOf(":");
info.set(key.toString().substring(splitIndex+1)+":"+sum); //与下一行顺序不能调换
key.set(key.toString().substring(0, splitIndex));
context.write(key, info);
}
}
public static class Reduce extends Reducer<Text, Text, Text, Text>{
private Text result=new Text();
@Override
protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
String file=new String();
for(Text value:values){
file+=value.toString()+";";
}
result.set(file);
context.write(key, result);
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf=new Configuration();
@SuppressWarnings("deprecation")
Job job=new Job(conf,"invertedIndex");
job.setJarByClass(InvertedIndex.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Combine.class);
job.setReducerClass(Reduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);
}
}

 2017-03-15 22:16:27,071 WARN [org.apache.hadoop.util.NativeCodeLoader] - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2017-03-15 22:16:27,748 INFO [org.apache.hadoop.conf.Configuration.deprecation] - session.id is deprecated. Instead, use dfs.metrics.session-id
2017-03-15 22:16:27,749 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2017-03-15 22:16:28,058 WARN [org.apache.hadoop.mapreduce.JobResourceUploader] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2017-03-15 22:16:28,061 WARN [org.apache.hadoop.mapreduce.JobResourceUploader] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
2017-03-15 22:16:28,124 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 3
2017-03-15 22:16:28,171 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:3
2017-03-15 22:16:28,289 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local1466554694_0001
2017-03-15 22:16:28,463 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
2017-03-15 22:16:28,468 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local1466554694_0001
2017-03-15 22:16:28,473 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
2017-03-15 22:16:28,479 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - File Output Committer Algorithm version is 1
2017-03-15 22:16:28,482 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2017-03-15 22:16:28,571 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
2017-03-15 22:16:28,571 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1466554694_0001_m_000000_0
2017-03-15 22:16:28,609 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - File Output Committer Algorithm version is 1
2017-03-15 22:16:28,621 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : [ ]
2017-03-15 22:16:28,624 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: hdfs://localhost:9000/user/hadoop/input/file2.txt:0+32
2017-03-15 22:16:28,679 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2017-03-15 22:16:28,679 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2017-03-15 22:16:28,679 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2017-03-15 22:16:28,679 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2017-03-15 22:16:28,679 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2017-03-15 22:16:28,683 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2017-03-15 22:16:28,754 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2017-03-15 22:16:28,756 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2017-03-15 22:16:28,757 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2017-03-15 22:16:28,757 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 92; bufvoid = 104857600
2017-03-15 22:16:28,757 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26214380(104857520); length = 17/6553600
2017-03-15 22:16:28,770 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2017-03-15 22:16:28,774 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1466554694_0001_m_000000_0 is done. And is in the process of committing
2017-03-15 22:16:28,785 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2017-03-15 22:16:28,785 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1466554694_0001_m_000000_0' done.
2017-03-15 22:16:28,785 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1466554694_0001_m_000000_0
2017-03-15 22:16:28,786 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1466554694_0001_m_000001_0
2017-03-15 22:16:28,791 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - File Output Committer Algorithm version is 1
2017-03-15 22:16:28,792 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : [ ]
2017-03-15 22:16:28,793 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: hdfs://localhost:9000/user/hadoop/input/file3.txt:0+30
2017-03-15 22:16:28,823 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2017-03-15 22:16:28,823 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2017-03-15 22:16:28,823 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2017-03-15 22:16:28,823 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2017-03-15 22:16:28,823 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2017-03-15 22:16:28,824 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2017-03-15 22:16:28,831 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2017-03-15 22:16:28,832 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2017-03-15 22:16:28,832 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2017-03-15 22:16:28,832 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 78; bufvoid = 104857600
2017-03-15 22:16:28,832 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26214384(104857536); length = 13/6553600
2017-03-15 22:16:28,834 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2017-03-15 22:16:28,835 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1466554694_0001_m_000001_0 is done. And is in the process of committing
2017-03-15 22:16:28,839 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2017-03-15 22:16:28,839 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1466554694_0001_m_000001_0' done.
2017-03-15 22:16:28,839 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1466554694_0001_m_000001_0
2017-03-15 22:16:28,839 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1466554694_0001_m_000002_0
2017-03-15 22:16:28,842 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - File Output Committer Algorithm version is 1
2017-03-15 22:16:28,843 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : [ ]
2017-03-15 22:16:28,844 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: hdfs://localhost:9000/user/hadoop/input/file1.txt:0+20
2017-03-15 22:16:28,888 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2017-03-15 22:16:28,888 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2017-03-15 22:16:28,888 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2017-03-15 22:16:28,888 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2017-03-15 22:16:28,888 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2017-03-15 22:16:28,889 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2017-03-15 22:16:28,893 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2017-03-15 22:16:28,894 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2017-03-15 22:16:28,894 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2017-03-15 22:16:28,894 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 56; bufvoid = 104857600
2017-03-15 22:16:28,894 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26214388(104857552); length = 9/6553600
2017-03-15 22:16:28,895 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2017-03-15 22:16:28,896 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1466554694_0001_m_000002_0 is done. And is in the process of committing
2017-03-15 22:16:28,899 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2017-03-15 22:16:28,899 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1466554694_0001_m_000002_0' done.
2017-03-15 22:16:28,899 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1466554694_0001_m_000002_0
2017-03-15 22:16:28,899 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
2017-03-15 22:16:28,901 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for reduce tasks
2017-03-15 22:16:28,902 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1466554694_0001_r_000000_0
2017-03-15 22:16:28,914 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - File Output Committer Algorithm version is 1
2017-03-15 22:16:28,915 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : [ ]
2017-03-15 22:16:28,919 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@4fb755c9
2017-03-15 22:16:28,932 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1945842432, maxSingleShuffleLimit=486460608, mergeThreshold=1284256000, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2017-03-15 22:16:28,934 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local1466554694_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2017-03-15 22:16:28,980 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local1466554694_0001_m_000002_0 decomp: 64 len: 68 to MEMORY
2017-03-15 22:16:28,984 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 64 bytes from map-output for attempt_local1466554694_0001_m_000002_0
2017-03-15 22:16:28,986 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 64, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->64
2017-03-15 22:16:28,991 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local1466554694_0001_m_000001_0 decomp: 64 len: 68 to MEMORY
2017-03-15 22:16:28,992 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 64 bytes from map-output for attempt_local1466554694_0001_m_000001_0
2017-03-15 22:16:28,992 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 64, inMemoryMapOutputs.size() -> 2, commitMemory -> 64, usedMemory ->128
2017-03-15 22:16:28,993 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local1466554694_0001_m_000000_0 decomp: 87 len: 91 to MEMORY
2017-03-15 22:16:28,994 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 87 bytes from map-output for attempt_local1466554694_0001_m_000000_0
2017-03-15 22:16:28,994 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 87, inMemoryMapOutputs.size() -> 3, commitMemory -> 128, usedMemory ->215
2017-03-15 22:16:28,994 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2017-03-15 22:16:28,995 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 3 / 3 copied.
2017-03-15 22:16:28,995 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 3 in-memory map-outputs and 0 on-disk map-outputs
2017-03-15 22:16:29,004 INFO [org.apache.hadoop.mapred.Merger] - Merging 3 sorted segments
2017-03-15 22:16:29,005 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 3 segments left of total size: 183 bytes
2017-03-15 22:16:29,006 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 3 segments, 215 bytes to disk to satisfy reduce memory limit
2017-03-15 22:16:29,006 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 215 bytes from disk
2017-03-15 22:16:29,007 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2017-03-15 22:16:29,007 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2017-03-15 22:16:29,008 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 203 bytes
2017-03-15 22:16:29,008 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 3 / 3 copied.
2017-03-15 22:16:29,049 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2017-03-15 22:16:29,186 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1466554694_0001_r_000000_0 is done. And is in the process of committing
2017-03-15 22:16:29,190 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 3 / 3 copied.
2017-03-15 22:16:29,190 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local1466554694_0001_r_000000_0 is allowed to commit now
2017-03-15 22:16:29,209 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local1466554694_0001_r_000000_0' to hdfs://localhost:9000/user/hadoop/output/_temporary/0/task_local1466554694_0001_r_000000
2017-03-15 22:16:29,210 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2017-03-15 22:16:29,210 INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local1466554694_0001_r_000000_0' done.
2017-03-15 22:16:29,210 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1466554694_0001_r_000000_0
2017-03-15 22:16:29,210 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce task executor complete.
2017-03-15 22:16:29,473 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1466554694_0001 running in uber mode : false
2017-03-15 22:16:29,474 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 100%
2017-03-15 22:16:29,475 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1466554694_0001 completed successfully
2017-03-15 22:16:29,487 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 35
File System Counters
FILE: Number of bytes read=4131
FILE: Number of bytes written=1128147
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=258
HDFS: Number of bytes written=165
HDFS: Number of read operations=33
HDFS: Number of large read operations=0
HDFS: Number of write operations=6
Map-Reduce Framework
Map input records=3
Map output records=12
Map output bytes=226
Map output materialized bytes=227
Input split bytes=342
Combine input records=12
Combine output records=10
Reduce input groups=6
Reduce shuffle bytes=227
Reduce input records=10
Reduce output records=6
Spilled Records=20
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=0
Total committed heap usage (bytes)=1592262656
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=82
File Output Format Counters
Bytes Written=165

结果:

 Hello    file3.txt:1;
MapReduce file3.txt:2;file1.txt:1;file2.txt:1;
bye file3.txt:1;
is file1.txt:1;file2.txt:2;
powerful file2.txt:1;
simple file2.txt:1;file1.txt:1;

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAswAAABwCAYAAAAKRiY9AAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7tnXlwVXW271dmkpCEJBCSAIFAAJkMYRQFG0SZtNupUbzaMry+z3qv+nVZvq737Hr+0fXue5R9u8qh6+m9rVe9qNzrQGtbdqPggC1wm0EGlSEImUfIPJ2czG+tXzhhn32mvXP2OTkn+a6q1GHv/dvr9/t91g5Z57fXb62Ijo6OAbvdTjabjVpbW6mlpYVKS0vp2edeIAgIgAAIgAAIgAAIgAAIjHUCkWMdAOYPAiAAAiAAAiAAAiAAAt4IwGH2RgfXQAAEQAAEQAAEQAAExjyB6DFPYJQByE7vpLiYPqdZ1bWMo/bO0WHqhLhempxqp/JridTXHzHKrIfpgAAIgAAIgAAIhCIBn17Uy784Qf/1/61wGbun8y4N+YS01Yonfb7auNMdSucWTm+mh39URmnJXSSunKd56s8b4WN0nj9eWUnZ6TbVPJIHkc5j2fPZTDp+aaJRFSHZTnjeOr+O7r21gsaP66WnXy+gVltMSI4VgwIBEAABEAABEBhdBHw6zFZMV+sg6p1Dh34jbawYSyB1bL29nP7t0AwqrEyhgQHjPVk59z/snz3U8X3sXIoTf6Y4zfhgdC3NfDHy1om/erbfVURZaZ207/B02sH/hoAACIAACIAACIBAsAgExWEO1mRGuh9ZzS2sYGfZy0D0q8temvp1afGsJlqz4Br99v0F1N0T+qHqEkaSP7OZ6lvjqLhmvMvcj17IoCvVSZSW1OVyTX9ixdwGstmj6FzZBP0lHIMACIAACIAACICAaQKWOcyLcpvpnhVVvArI6en4VfmBU9l0+FyG6QEZuWH94lpae/NVmjC+m5rbY+nQt5Ppy28zjdwakDbaVfOXNOEnnlaO/XGajXDOTO2kx9cX0xufzaJrzeOGNWftnLT/1o790XUlFMGxEm9/mTvUx2N3lKjV9b2HBs8Z0SM3Jyf0qJXjE5fS3TrMl6uSDM9D9FTWJ8BhNkwMDUEABEAABEAABLwRsMRhnp/TQjvuLOJwhFw6X55CkyfYaeeGIqpviaOLvOJqpcjq4WpeOX3j4CyqbEigqRNtyjkUJ/2by+lWdmVYl8OJ9BZ2oG1jWLGuoVHOD64uVxvi5k1rUTaoaYw33aWROb379Qx66oGLtCSvkU5fSaOl/ClhE89/OG+oPyN6pLGMt7Etjtrt/scli56WDv/1mIaGG0AABEAABEAABEYlAUMOs6e4YweRzcur6OPjU+kUO00iZZzBYN+RHFpfUGu5w7wuv5be+3o6FdcOvraX1/dyfA9vdhsphzlYT4ZRzrKyf6G8i2ZPaaNf/fQCPfOvi6mzO8ryYfb2RdAr+/Pol/cVqi8sd7MNXvzTTSTnzYo4uc/syTd7m9v2VulxqxwnQQAEQAAEQAAExhwBQw6zuxACrROdM8lGr32a5wRPHNm/W1dqOdCMFDuVXnWOcS3hY1nVHu1ilPN3JakKxV+/m0y//U9naB6/AZAV4EBIc0eserPw5P2F9MKHN/HKbmwguoFOEAABEAABEAABEBgxAoYcZiOj273zrEszM5kiXG7GCbcEzHDuH4igts4YFR8cSJme0cGx5DGUw5+yMQ8CAiAAAiAAAiAAAqOJgCUOs4RgvPpJnnLOfElPbyTFRPVTT5/nzA3e2lzjIhwzJrc7hXrk8vHVYW5u8zXeYF/3NncznGXcUZEDlJLQTW1u8hWnJXWrWHDheeyi5xzN/RxbHMl65NOdiJO8al497X5nIcczF5JszquoS3Rp6ktPIudWls2cFbxZ74wfq+HRUQO0hUOErjaNC/vc0y4QcQIEQAAEQAAEQGBECHj2Wk0MZ//JKbRrYxE7sh0UG91P8XGSIqyJnuTYVr1I9oJb2MGKjPCcfM1bm684I8bW28uU0xwb00+5me20dU0ZZ8oYuSwZ+jn6c+xt7kY4b1pWrRxh2SD4M94MKVksCiuTXYaUOr6LpO3KufUu17QnJM1bAaeoc2cvSQW3kzNS7OXc07auaJWDWjZ76isNij5veuS6VPCT8eTnNnkdj6+L0yZ1KD1x/GxAQAAEQAAEQAAEQMAKApasMBdWJKtUYlIoQ17PR7AzLDHMB09nuYxRNuhtv6uYtq0t9VgNz1ubE1yxLjmxh36+qYgmJHZTE6eV++v3k+nkDyOTIcNlgm5O6DdNekrTJrd6m7sRzpIVY/XCOg7D6KYGdnZ//9Fc6rC7mrmzO5ousSMtJaa9yQdHp/EXknLateGKcr618eyPsA0lXrrEsQGTP7/n421ry1R1Qa140yPtuvnNg4ynpjHB23BIVuClnaeNhfJFSnSF8vPgdYK4CAIgAAIgAAIgEHIEIjo6OgbsdjvZbJw/ubWVWlpaqLS0lJ597oWQGywGBAK+CMibjt7eCHrzC2eH3dd9uA4CIAACIAACIAACngi4Lj16aonzIBAGBNo7o+lYoeeY7DCYAoYIAiAAAiAAAiAQYgTgMIeYQTAc/whISAsEBEAABEAABEAABKwkYMmmPysHBF0gAAIgAAIgAAIgAAIgEEoE4DCHkjUwFhAAARAAARAAARAAgZAjAIc55EyCAYEACIAACIAACIAACIQSAcQwh5I1MJaAE8hO73TJE13HxVtks2C4S3pyF02baKMOzol9hQvIeM50Hn4zlTzdk1PtKg1in4ciOuE3q8H846NtXngOw/FJxJhBAAR8EfDpJUjOYMmz+7t984d0/Y+tF1ThEG1OXl8dGbmuzU/c1ROl8ghLxoNDXKzEij+Sot/qMRuZF9oMElg4vZke/lEZpbFjJ3UD3dnCnY30eazd3WeU8Y9XVlJ2uk01j+RByB93yRl9nPN7h7P85JZKWl9QS9UN8ZSV1sn5sCfQawfy/JpSKNhLnpNb59fRvZzjfTxXg3z69QJqdVO50q+JjsDNgZhXKNgrEM/hCJjHpctA2MulE5wAARAIaQI+HWYZ/aQUO6UldVFjW5xyMCYm2wM2KYczJBUDxbF54LYK1ee7f0X2g4BBD5LirbeXq2qAhZUpqtCNUdE6yHrn2agOR7s/7J89dIsU2hEn40xxmlk1Q+3dOfjDUeavHuH5m7duVoV85kxtVVU23z/c45dzGQr22s6VJOULwL7D02kH/9tf8Zezo39/9Vg9LxlXKNjL6ufQX86hbC9/n2XcDwIgEFwChmKYzxSl0dLZjWpkS/Ma6awfDobR6Um1ttKr4+mNg7No+ZwGo7ehXQgTkC8+hRXenWV/Vo/NTH0xl/tewyXEX/lkNnX3GPo1MKPe8rZSbnzF3AaamdXuVvfHx6cqZ1mksm6wWmJyQo/btqJHvij4klCw19ELGfTsewupiCuHhpP4speZeYWTvcw8h6Fkz5GwVyjNH2MBARDwTcDQCvOpy2n04Opy+oxLXS9j5/WPR3JoNTsbWlmU20wbl1RTDpfGtnM4xTl+JbyP29k4nlJEVgre/HwmbV5eRanjB8s2f3oqm477KDLRzytnUmpb39c9K6p45YmrE/Lr2QOs5/C5DKc2t8yrp01Lq9XKeHNHLH1yMtvpuqeVC/35/JlNtHlZtVrtbrXF0n7W8x8XJpkej9MNY+xAmDrkJc2/Pa0c++M0y3Po69nITO2kx9cX0xufzaJrzeOGZQ3tnLT/1o790XUlqpz421/mDvXx2B0lanV976HBc0b0yM3i/MoK64lL6arsvDdJT+5Wl+W5dyeip7I+gc6VTXB3Wf2uOmSk7XWZY7GtECOcg2kvM/MKJ3tpbeXrOfRm19FsL2/zxjUQAIHQJWDIYb5cncx/sHtp0Yxm9Yfb3X/2d+TXkqwuFHO8cxyHU2xeXk2PrCul1z69EUe5iR3PNz+fRRX8x3oKO6DitLSxw3uhPMWFUExUP2VMsNP9HJLxzQ/pQ9fn57TQjjuL+NV+Lp3n+yZzm50biqi+JY4u8uqliIxTnPc97KBXNSSojVA/477MijhfW9eUKedGnJTU8T10Z0GNk8NsZDxm+x1t7R1OpP7LiHae2jbDnb9RW8iXP4mJnzetRT03NY3xprs0Mqd3v55BTz1wkZbwW5nTV/gtDX9KeMHzH84b6s+IHmks45WQqHZ7jM+xLuDVY4ll9rSRUfS0dHjWY2RMwbSXzwkbaGBkTiNlL1/DD1d7+XoOvc17NNvL27xxDQRAIHQJGHKYZUVM/uA/yqtjZ4tSqX9AtkA4y4t/umnoRA+HU3x8fArt3nHWqZFUYXO8WpWNhO9xXKKs3modZnGqRH/k9VXlYxcn0rua6m2yQi2O+Skej0gZ75qXlWzZ8ORwmDfwyrL0JX2ISJ9y/IufXHIaj6+Djdf1XLzu0Nc2RTmtFsr9Rsbjqx9ct4aAUVvI24gL5V00e0ob/eqnF+iZf11Mnd1R1gxCo6W3L4Je2Z9Hv+R4YnkTcjdvOJTfEzlvVsRpemZPvs/boiIH1NufL85memxrRI/Hmy28YNReFnbpVdVI2MvrgK5fDEd7GXkOjczdWxvYyxsdXAMBELCagOHgzW84LENWl09dubHa6xiMpHySldj//fi39OJ/+Ua90n3uP5+iuNg+p/E6HFjHyVJ2aGXFTSuysvCLl5bTL/9pudrlL7GmUzgVmENyJtmU064VWf2VdGEOyWadEv+slRLdsdNFDweyMn2l2vsrYSPj8aAepy0mYNQW35WkcuaVTPqXT/KoX1aa+a1FoETCIuRtyJP3F6rPFg9hElb1f9eSGvWF84guRMkq/VbqMWovK/v0pSvY9vI1nlC6bsZewXoOYa9QekIwFhAY3QQMrTALAnF2Ha/J9Ei231lMHfZoevnjOSoVXE9fpMp1+/wTp/RNXY4lxtOdyOqBxE6nju/imNRK+qe/zBlqtnun88q1XNBmXXC3Au6uD/05WRUZjvgaz3B04p7hETBjC3lO2jpj1BfBQMp0jutvbo9R8f2+voD5Mw4JYZK4/Zf/PEf9DoaDmLFXsOYTLHsFaz5W9mPEXsF+DmEvKy0MXSAAAp4IGHaYPSmQ8/Jq+3/t4dfaXTdea8/l1FZ6yc1sdwq/kFzONY3eN1199V0mbVxaQymJ3Wp1TkIwXuWVQXF0PInEpIpuR4iGtMvlY62Ig58U3+OkZ9qkDqc2Emudl91GsiLpSYyMx9O9OG+egIT7SHy7O4fQrC3kC1JKQreKo9dLWlK3Cm24xkVNJCzIk8gKdSTrkU93Ik7yKt6AuvudhRzPXKji/yvqEl2a+tKTyDmI1y+uVfH/Z66HI2mVyBfUJ7Zcps85FOOHqmQX/Y4T0VEDtIXDmq42jQtK7mkr7eVxUnwh3OzlbS7aa+FmL6PPIexl9AlAOxAAgVAhYMkylOy4lz/m8XF96qdgViP9dE25yxwfur1MpcWKjelnh7ZD5Q09eNo5e4X+JllpPlucOpRabv/JKbRrY5G6X3I1S3+SyULyzjrk4KkspVu14b6kT+lbK5cqk1XmD3HERY84xtu4qIZWJPuG3Cev7OUPgaycPLK21KmNkfE43YADvwjIsyYZUBwx7lplRmwhG0/FEZYNgrIRVN5wFPKzoBd5syFtV86t119yOq7nNyoFHDbkbjzyzOzkjBR7Ofe0ZIuRHNSyQVXO68WbHmkrYU8ynvzcJv2t6lgKwkibq03xtGx2g/qRZ1sv8qVQ9MTx70UwxF97GR1juNnL6LzCzV5Gn0PYy+gTgHYgAAKhQsCSFWbJlSwxzP/AMcyy+lfOeWCletp/f/Ci0zwPsCMrDsSE62nlDnKaOqlI5ksk9Zz8R/z5mSzO45uswi+k6IS8ipOUcxLDLLocIumykq6n4ZJcspKfdv+JKfQ4h444RDYBijP8zCPnlMMsY5bNg5LVwCEytqiI6XTfqkqVwk5Wtf/CerRiZDxON+DAhYA2hZRc1B7rw4DEbtvvKqZt/MVF1nS1143YQrJirF5Yx2EYg6kNf//RXBVOpJfO7miSL1VSitmbfHB0Gj/75bRrwxXlfGvHI1+u5O2EI3ZfMsh8z8fb1pap3w+teNMj7SQvuYynpnEwx7J+TJJLupadZamK5xBxwvUx0/LmRXSd1GSe0evydRxMeznGIivVMn9PGybDzV5G5xVu9jL6HMJevn7LcB0EQCDUCER0dHQM2O12stk4z3BrK7W0tFBpaSk9+9wLlo7VW0oxSzuCMhAAAY8E5O1Mb28EvfmFs8Pu8QZcGFECsNeI4jfdOexlGhluAIGwIeC6tBY2Q8dAQQAEzBKQ3MzHfBQLMqsT7QNHAPYKHNtAaIa9AkEVOkEgNAjAYQ4NO2AUIBAUAhLSAgkfArBX+NhKRgp7hZe9MFoQMEMg+tKlS9TV1UWdnZ3E4RnU3u6cTcKMMm9t9bGo3triGgiAAAiAAAiAAAiAAAiECgFLsmSEymQwDhAAARAAARAAARAAARCwmgAcZquJQh8IgAAIgAAIgAAIgMCoIhD9t+MnqKenh7o5LEOyZUhoxqKFC0bVJMfSZKREuD7Pbx0X35DNKKNBJNfw5FS7SvfW56FYyGiYJ+YAAiAAAiAAAiAQOgR8elFIB2fcWAunN6t80Wmc+1mfI9ihxR1PfV5bf+K9f7yykrLTbaq7SB6E5KGWnL/HL3muVmd8hiPXUnhKjuF7Of/2eK569/TrBdTqpkLfyI0QPYMACIAACIAACIxWAj4d5tE68UDMS6oLSjW3wsoUVVzFqGgdZL3zbFSHo90f9s8eukWKu4gTf6Y4zayaofbuHPzhKPNXz3YueJOV1kn7Dk+nHfxvCAiAAAiAAAiAAAgEiwAcZgtJy2puYQU7y150+rN67EWty6XFXK55DZeA/u37C0iqb4W6SBhJ/sxmkup0UrlRL0cvZNCV6iRKS+rSX3I5XjG3gWz2KJKKjxAQAAEQAAEQAAEQ8JeAIYd51bw62ry8mlKvl7SWEtd/uzhpqO9fP3yePvrbVLpQnjJ0blZWO/3duhL6h39bNHRuUW4z3bOiSpWZltfpB05l0+FzGf7OYcTv164Kv/SLE0Pj8bRy7I/TbIRhZmonPb6+mN74bBZdax43LD7aOWn/rR37o2xfKQf99pe5Q308dkeJWl3fe2jwnBE9cnPy9VLmJy6lu3WYL1clGZ6HrEBX1ifAYTZMDA1BAARAAARAAAS8ETDkMG9cWsNxsLOogp2QKRwfK85YW2cMnSsdXME7fG4SrV54zclhXpLXQKev3AgFmJ/TQjvuLOKQhVw6z4715Al22rmhiOpb4ugir8qGszicSG9hB9o2w52rUYYPri5XG+LmTWtRfGsa4013aWRO7349g5564CItyWtUtl7KnxI28fyH84b6M6JHGst4G9viqN0eY3qs+htET0uH/3r0enEMAiAAAiAAAiAwNgkYelcv1YuK+DW5vNovqR1P73Ec6cal1UPETv6QTnOmtFFKYo86Jxu0CvKa6NTlGw7z5uVV9PHxqXSKHSt7dxSVcZaDfUdyaH1B7dgkP4xZG2Uoq/b7T2bTBH4j8KufXqD42L5h9Ob7lt6+CHplfx7dwxsN87Lb6G7+fOWTPJLzZkWc3Gf25HOMco7ZW13ai56XPp7rch4nQAAEQAAEQAAEQGA4BCJXrVxBK5cvo2VLl1DB4ny6edFCFz3iJGullI+z0uxDp7p6opRzLFkMRGZmtakY0tqmGyubOZNsdLYo1UmPxKpKGjSIMQJGGX5XkkqHvs2kf2HntV9Wmnl1P1DS3BGr3ho8eX+h+mzhYwgIgAAIgAAIgAAIjCYChkIy3E1YnwXiyPkMemLLZfr0m+zrr+jTXW7bvfOsyzm9HpcGOOFEwAzD/oEIFToj8cGBlOkZHdTcHkM5/Ckb8yAgAAIgAAIgAAIgMJoIGHKYczPbneKTZ0xud4mLrahLYOcsWqUxk3CMF/90kxMnCcF4lVc8xYGDeCbQ0xtJMVH91NPnGi1jlmFU5AClJHRTm5t8xWlJ3bSas2hc46Imxy56ztEsK9SRrEc+3Yk4yavm1dPudxZyPHMhyea8irpEl6a+9CRybuX1i2tVnPwZTey7iyIfJ6KjBmgLh/9cbRoX9rmnfUwVl0EABEAABEAABIJEINJms6nqfvIjlf7kRy8P3V7GYRbtFBvTTzMmd5DkG5YMF3qR2Flpa7NHK4dFK/tPTqFdG4vU/bHR/RQfJ2nEmujJ+wr1asb0sWR3uIUd0MgI1+R0RhhuWlatHGHZIPgz3pwpWSwKK5NdmKaO7yJpu3Juvcs17QlJ81bAKercjUdSwe3kjBR7Ofe0rSta5aCWjZz6SoOiz5seuS4V/GQ8+blNXsfj6+K0SR1KTxw/qxAQAAEQAAEQAAEQsIJA9KxZucpJFse5vb2dWltbqa6uwUm3hFlIqi5HWrlP2Vk+X+aa2eKby+n0U87Q8Dc3K5aFFckq3ZgU05BX+BHsEEoM88HTWVbMI6R16IuReErTJpOQDZbb7yqmbWtLXaoFGmEoWTFWL6zjMIxuamBn9/cfzaUO/gKjl87uaLrEjrSUmPYmHxydRlvXlNOuDVeU861NK/cIj1HipR0x7sUc2/49H29bW6aqC2rFmx5p180r6zKemsYEb8MhWYGXdp42FsrbD9ElG1EhIAACIAACIAACIGAFgYiamqoBdw7zs8+9YFq/rEL+3x1nORxjHm/4G17+X9Od4gYQ0BCQtxi9vRH05hfODjsggQAIgAAIgAAIgMBwCbguPQ5Tk0S4ruFczJI1Ac7yMCHiNr8JtHMc/bFCzzHZfncABSAAAiAAAiAAAmOOgGUOs1S4k1y6srEPAgIjRUBCWiAgAAIgAAIgAAIgYCUByxxmf8o9Wzkh6AIBEAABEAABEAABEAABKwm45i6zUjt0gQAIgAAIgAAIgAAIgECYE4DDHOYGxPBBAARAAARAAARAAAQCSwAOc2D5jph2yWssBWekeMloktE4r/TkLlrMOclnT2lTqQRHi4zWeY0W+2AeIAACIAACxgmYimGW/MGIVfYMV6ocPvyjMkpjB0gcH3es3DHU52l2d5/nXp2vSL+3zq+jeznf9Xiunvf06wXU6qbSn1F9odIuEPMKBXv95JZKWl9QS9UN8ZSV1sl5rCfQawfCf+PsaJ1XqPw+YBwgAAIgAALBJWDKYQ7u0MKvN6mAKNXuCitTVJEWo6J1kPXOs1EdjnbbucCMOF77Dk9XxWb8FXcO/nB0+qvH6nnJHELBXvKc/Oatm6mpPZbmTG1VlS/fP9wz7C85/nJ22NZfPVbPazjPHO4BARAAARAAAasImHKY/Vn5tGrAoaxHXkEXVrCz7GWQgWZ49EIGXalOorSkLi+jCL1LUk47f2azKqEtFSD1YmZeK+Y2cHn2KDpXNkGvxuk4FOz18fGpQ2OqrBuscpicMHyH2euELbzoy15m5mXUXhYOH6pAAARAAARAwBQBQw6zdtXTncOXFN9Dd6+sogU5LVySuYf6+iNUueQvv810W0Lb1AjDoLGWj+SjdoinlWN3DI1Oc1FuM92zoopXkW1qFfIAlyk/fC5j6PbLVUlGVXltp52TJ/s/uq5Elct++8vcIV2P3VGiVtf3Hho8Z0SP3CzPjayIn7iU7tZhNjMv0VNZn+DRYQ4le2mNkJ7crQ6l+I9ZMcI5mPYyMy9f9jLLAu1BAARAAARAwGoChhxmh4On/aOsHcjfb75C35dOoN/tm0/t9mhKiOujvOw2urOgZkw4zFo+npxhXwyNGHY+fyHZcWcRh33k0vnyFJo8wU47NxRRfUscXeSVbSvFyJze/XoGPfXARVqS10inr6TRUv6UcJDnP5w3NBQjeqSxfMmSwjft9hi/pyF6Wjo86zEyppGw1wKOgZdYZqlWaFaMzGmk7OVrXr7sZZYF2oMACIAACICA1QTM/2V2M4KpE23071/NGIq7lD/4Z4tS1Q/EOgKbl1eRvOo+xc6pSNm1RNp3JEdtGrPaYTYy6t6+CHplfx79kuNuZbX77pWV9OKfbiI5b1bEaXpmT77Z29y2t0qPW+UmTpqxl2QzWb3gGn1xNtNED+aajoS9jMwrVOxljiZagwAIgAAIjCUClqSV+/xMJv364XNqtXHrmjJal19LMya3jyWOQZlrziSby5cQiffNTu8MSv/uOpHwAVnxfvL+QvXZMoxwAnd6R8M5M/a6a0kN9Q9E0BFNeE0gGATbXsGaVyBYQScIgAAIgAAIOAhYssK8/+QUOn5pIuVltdHElC66iXf737eqkr7mP/5/5BVQiHUEdu8866LMTEYOl5stODE9o4Oa22Mohz9lwyHkBgEj9srg0JpNS6vp5T/PoZ4+S77DejVBsOwV7Hl5nTQuggAIgAAIgIAfBCxxmKX/Bs5uID8OyUy109MPnYPDbNI4Pb2RFBPV79ZxkhCMVz/Jo7ZOz/G5RrtLS+pWIQDXWsbRsYsTPd7Wz7HFkRwuIJ/uRJzkVfPqafc7C/kNQyHJ5ryKukSXpr70JHLO6PWLa6mCN+uduR5y4qLEwInoqAHawqErV5vGqS9xgRZ/7SXZJp7Ycpk+51CMH6qSPQ433OxldF7BtpdHwLgAAiAAAiAAAl4IWLKc9asHL9At7DTJH3VxrlISe2jF3HqVqQBijoAwE5aREa7J6WQlf9fGIg536aDY6H6K582V+VwhTnL3mpXU8V20aVk1rWQ7eRNJ81Ywq8nteMQp2skZKfZy7mlbV7TKQS2bEOW8XrzpkbZSwU/Gk5/bpL/V1PG0SR1KT1xMv6n7htvYX3tJoRuZ+9WmeFo2u0H9pCQOZsvQjinc7GV0XsG213DtjPtAAARAAATGNgGfK8z6zBjuUox9dGwarb35Kj14WznFsqMiGQq+L0mlf94/Z2zTvT57IwwdoN77ejptv6uYtq0tdakWWFiRrFK23cdV/OS1egQ71RLDfPB0lgtnWfm8VJnscQNeZ3e0ul7Oq9be5IOj0zguvZx2bbiiUshps4A8wmP8ju0sKQRFivlT7L5tbRnt+Wymk1pveqRh9/WHGnTwAAARqUlEQVTx1jR6/5Lla14SOy+6Tv6Q7m1aXq8F017dPZFUy86yVGd0iHy50MeCh5u9jM7LCnt5NSYuggAIgAAIgIAFBCJqaqoG7HY72Ww2am9vp9bWVqqra6Bnn3vBAvVQAQLBJSAr8L29EfTmF84Oe3BHgd6MEoC9jJJCOxAAARAAgZEkEF1UVELd3d3U2dk55DTHxd2IRR7JwaFvEDBLQFIaHisMfOyy2XGhvXsCsJd7LjgLAiAAAiAQWgQi6urqBrq6upSz3NbWplaYa2pqsMIcWnbCaEAABEAABEAABEAABEaIgCWb/kZo7OgWBEAABEAABEAABEAABAJOAA5zwBGjAxAAARAAARAAARAAgXAmAIc5nK2HsYMACIAACIAACIAACAScABzmgCNGB6FGID25ixZz/urZU9pU6r7RJJLTOTeznaI4HzoEBEAABEAABEDAGgI+8zBb083IaVk4vZmkiEIaO0niHGnzCHsblT4Xr9H7vOkc69eM2EK461lbaYuf3FJJ6wtqqbohnrLSOjlv9AR67UBe2JtGnm3J5Xwv5+gez1UTn369gFpt/leEDHswmAAIgAAIgAAIWEBg1DvMW28vVxXoCitTVNEPo6J12vQOm1EdaOdMIBRsIc/Ab966mZraY2nO1FZVJfH9wz3Ddi7dOfjDsbu/erZzxUX5ArDv8HTawf+GgAAIgAAIgAAIWEdg1DvM8vq9sIKdZeuYQdMwCRixhX51eZhdebzt4+NTh65V1g1WFUxOGL7D7LEjiy9IufH8mc0kVQCluqNejl7IoCvVSVyevkt/yeV4xdwGstmj6FzZBJdrOAECIAACIAACIOBKwKfDLCtfb34+kzYvr6LU8d3UwH+wPz2VTcd1xSHWL65V5bEncJtmXr079O1k+vLbTNXj/9l+lp77YB41trkWRJE/8E89cJGe2bNYtV2U20z3rKji1TKbWvU7wH0dPpfhMnIZ1/98rYBk1XJBTjP1DUTQpyezh/rUrgq/xG0d4nDIPK3oeTrvMgCcMEzAly1EkbaNP06z0edH+kxP7lZzaO6INTwXR0PteD2N/dF1Jaqc+Ntf5g7pf+yOEvWmY++hwXNG9MjN4tTLyvGJS+luHebLVUmG5yB6KusT4DAbJoaGIAACIAACY52AT4dZAG1aVs1O8yyq4D+yU9Jt9Pj6YmpjZ/ZCeYriJytWqxdcozcOzqLKhgSaOnGwjTi831xOVytfMyZ3uHWY5bxcF5mf00I77iziEIpcOs+6J0+w084NRVTfEkcXeZVYLz9bX0Infkind76aTtFRA7SFnXqH+HKM9bpwHDgCRmyhbTPckZh9fhZwfLvEMku1ObNiZE7vfj1DfRlcktdIp6+k0VL+lLCJ5z+cZ/o57euPUL8/7Xb/45JFT0uH/3rMMkN7EAABEAABEAhXAoayZLz39XQq4tfA3T2RVFI7nt7jOElxoh2yLr+WpE0xX5M28spYju/gVWeRohpxmNvVv2UX/z/+/DSNi+1Tx+Iwy3URWcWWV+an2Lmwd0dR2bVE2nckR23ScidnilLpG3aYbV3RajX6nb/OcNcM58YIATPPj2SRkC95Ry9MChid3r4IemV/Ht2zspLystvobv585ZM8kvNmRZzcZ/bkc4xyjtlbXdqLnpc+nutyHidAAARAAARAAATcEzDkMIuTrJVSPpaVModkpNip9KpzmxI+lhViEVlBzs3sUP9eeVM9RbOzsnxOgzoWR9qxwpwzyUZn2QnWijjf2ek3+tJeu1COGEwnWGP8wMzzc9eSGurnMJ4jbsJ9rMQo4R7yxuTJ+wvVZ8swwj+sHA90gQAIgAAIgAAImCcQ/emnn1JPTw91dXVRZ2cn2Ww2mjlzpk9NEptpVGob49VmpEh2lNcsrKN3ZfU5/yodOZ/B57tJrjtk986zLmo9Zbew+rUycte6oA+7E0aenwz+IrdpaTW9/Oc51NNn6DujXxymZ3RwXH8M5fCn48uhXwpxMwiAAAiAAAiAQFAJRK+6Ywt12bvYUe6gjvZ2am1tofaGG+EWMhophOCIV5ZjWRWuaRw3NNBrLePUOW2ccS4fX20ebCMZKirqEmntoqtqw5NsGNy4tEatNsvmI0cGCwnBeJVfWbd1Bj6+ssMeTUnxPU59TZs0uAqut0BPbyTFRPUHxbnS941jZwLebGHk+ZFsE09suUyfn82kH6qSPeKVL3ISsiHP9rGLEz226+fYYvkiKJ/uRJzkVfPqafc7CzmeuZBkc578LujFl55Ezq0sG2tlH8EZDlkarjhi/a82jaPjlzzPa7j6cR8IgAAIgAAIjEYChpbXHrq9jGZmtVNsTL+KOZbMFAdPZw/x+IozYmzlNuI0SxtxsLeuKeNMGYNZMqShrKzds7JKbQIUkdjjB24td1px239yCu3aWKT6iI3up/g4SaXVpHLlWi2XKpPpwdXllJLYrfqSGNNtXODEnYhTfws7PZERSE7njk8wz3mzhZHnR4rYSBz91aZ4Wja7Qf3IM6CX1PFdKk5/5dx6/SWnY0nzVjCrye2zIc75Ts5IsZfzgEucveQDl02scl4v3vRIWxmzjCc/t0l/q6lj+VIoeuL49xQCAiAAAiAAAiBgjICh9AAHTmWpP/ySMk7Syh08naUqpDnkBK9UJSf20M83cRt2PqQoxF+/n0wn2Sl2iDjMstHvmx8GV8dO8qdshtK+oi6sSFYr0PdxtTJ5jR3BDqrEMEt/VotsSpQvAs88ck45zOWck1c2GEpWA71I2+13FdO2taWmqgXq9eDYPQFtajVp4SlNm1zzZgsjz49sSq1lZ1mq4jlEnFV9bHFndzTJl6pyfuvhTT44Oo2/HJbTrg1XVAo5bUq8R/h5+a4kVW2UFZFNsd/z8ba1ZbTnM+ewJ2965N5ufssh46lpHMwd7WlMsgIv7TxtLJQvtaJL+7vpSRfOgwAIgAAIgAAIDBKIuFLVMOAuJOPZ515QLZCXGI8KCIweAvIGp7c3gt78wvc+hdEza8wEBEAABEAABPwjYGiF2b8ucDcIgECoEJCc08d0RYdCZWwYBwiAAAiAAAiEKoEhh9n9lqVQHTbGBQIgMBwCEtICAQEQAAEQAAEQMEfA56Y/f8oUmxsKWoMACIAACIAACIAACIBA6BHw6TCH3pAxIhAAARAAARAAARAAARAIHgE4zMFjjZ5AAARAAARAAARAAATCkAAc5jA0mq8hpyd30WLOXz17SptKgzeaRPIRS57v0VaVEfMaTU8p5gICIAACIDDaCFieJSOQaej0+XpDLb564fRmksIYaeywiqPqbnzu+Fg5r5/cUknrC2qpuiGestI6Vb7s1w7khf1zKzwld/K9nKN7PFe9e/r1Amq1+VcRMhTsFYh5hYKxR+u8QoEtxgACIAACIBB8ApY7zIGcgtYB1TuZgezXqG6pgCjV3AorU1QBFqNi5byk39+8dbMqHjNnaquqkvj+4Z5hO5fuHHyj89K281fPdi6cI18A9h2eTjv431ZIKNjL6nn5y9nB1V89Vs/LCntDBwiAAAiAAAgMl4DlDrO7VdXhDi7c7pNQiMIKdpa9DDzQfD4+PnWo90quXiiSnDB8h9nLVCy9JOWi82c2k1Tdk+qOejl6IUNVhUxL6tJfcjleMbeBbPYoOld2oxqlSyM+EQr2MjMvd3MYqXMjYa+Rmiv6BQEQAAEQAIEbDrOHYNek+B66e2UVLchpUY5XX3+EKvX75beZdL4sZYigdsXXnVMo109dSaN501rp0LeTVRzqjMkdqhz1sYsTlR5p8+bnM2nz8ipKvV6G+9NT2XR8GIUWFuU20z0rqnhV0qZWVw+wnsPnMgJice3cX+I5OMTTyrE7PkYHZmZe6cndSm1zR6xR9UPttHPyZNtH15WoctBvf5k7dN9jd5So1fW9hwbPGdEjN8uzJSvHJy6lu3WYL1clGZ6D6KmsT/DoMIeSvczMyxsAI5zD1V7e5o1rIAACIAACIBAMAj5XmP9+8xX6vnQC/W7ffGq3R1NCXB/lZbfRnQU1Tg6zwwnU/uHWT+BvFybRf5yfRP/t3kv08sdzqLs3kratLR1ymKX9pmXV7DTPogp2eKak2+jx9cXUxg7vhfIbzrler/54Pjv3O+4s4vCIXDrP902eYKedG4qoviWOLvIKsNWinbsnZ9gIH1/jMjuvBRxTLbHMUt3NrBiZ07tfz6CnHrhIS/Ia6TR/GVrKnxI28fyH84a6M6JHGssXsca2OH7G/ItLFl2ip6XDsx4jYxoJe5m1kba9kTmFq7384YJ7QQAEQAAEQMAKAj49qakTbfTvX80YioEV5+tsUar6MSva1bRLlcnq9vSkwVVQhy6pRFZ0/ZW8rGS/xzGrm9mJNuMwywq1hCbIirZI2bVEtZItm+EC4TCb5TDc9mbmJVkkVi+4Rl+czRxudz7v6+2LoFf259EvOU5aVvHvXllJL/7pJpLzZkWc3Gf25Ju9zW17q/S4VW7ipBl7mVA77Kaw17DR4UYQAAEQAIExTsBnWrnPz2TSrx8+p1YSt64po3X5tRxK0T4sbD19kSQ/Io5/x0T3O+kSJ1krpXwsq5ZmJGeSzcWhl7jY7HRzesz0GYy2ZuZ115Ia6h+IoCMBCkNxzFfCPWQl/8n7C9VnyzDCP4LBbiT6MGOvYI0P9goWafQDAiAAAiAwmgj4XGHef3IKHb80kfKy2mhiShfdxJkX7ltVSV+zI/ZHXrUNhkicrFnZvfOsyy1mMle43BwiJ4zMK4NDUDYtraaX/zxn6AtKIIc/PaODmttjKIc/ZWMe5AYBI/YKNi/YK9jE0R8IgAAIgEC4E/DpMMsEGzhzgfw4JDPVTk8/dC4gDrNsBtSGX8hqdk3jOBfOPRz/HBPV79YhlBCMVz/Jo7ZOz3GsLgpD5IS/85LsBU9suUyfcyjGD1WDYS/uppbGoTASsnGtZZxTDLm+bT/HFkdyeId8uhNxklfNq6fd7yzktxCFJGE3FXWJLk196Unk3MrrF9eq2PUz10NpXJQYOBEdNUBbOCTnatM49UUv0OKvvYyOD/YySgrtQAAEQAAEQMB6Aj5DMn714AW6hR0i+YMtjlNKYg+tmFuvshAEQh66vYxmZrVTbEy/yqIhuXIPns526Ur6l3FFRrgmcZNV8V0bi9T9sRzyEc8bFfO58p3kJA518XdeUjhFqsZdbYqnZbMb1E9KonOcuDBIHd+lNliuZFt6E0nzVjCryS1ncc53ckaKvZx72tYVrXJQy+ZKOa8Xb3qkrYxZxpOf26S/1dTxtEkdSk8cPz/BEH/tZXSMsJdRUmgHAiAAAiAAAtYT0Kwwu19B/OjYNFp781V68LZy5cRK9oHvS1Lpn/fPGRqNPjOGpzRkRoZ/4FSWcsImXE8rd/B0lqpWpxfZHLj9rmKVZUNGrs1OUViRrFKb3cdV4eT1cwQ71RLDLLpGQszw8Xde3T2RVMvOslTFc4g4q/rY4s7uaJKNl+W8Gu9NPjg6jWPXy2nXhisqhZyW8yPM/jt+Fhxx58Ucby7Pxra1ZbTns5lOar3pkYaSMUXGU9Po/YuYrOhKO08bC+WNhOg6+UO6t2l5vRZMezkG4mtesJdXk+EiCIAACIAACASUQMRbb701sOTW9dTZaaP2tjY68sVfaObMmfTscy8EtGN3ysVR0Tpk7trgHAh4IyBvFnp7I+jNL5wddm/34NrIEYC9Ro49egYBEAABEDBOIHLTpk2UEtdPybH9lMQ/t912m/G70RIEQoyApD386vvJITYqDMcTAdjLExmcBwEQAAEQCCUChjb9hdKAMRYQ8EZAQlog4UMA9gofW2GkIAACIDCWCfjc9BdMOAjHCCZt9AUCIAACIAACIAACIGCEAFaYjVBCGxAAgVFNQL/R091k8YXeHRWcAwEQAIGxQSCkVpjHBnLMEgRAIBAEJM2kpBWEgAAIgAAIgIDVBMa0wyz5ghfNaKabOffv+Pheq9mGhD4pCJKZGjolwUNtPFYZabTOywifUJn7qpvqSMqRQ0AABEAABEDAagL/H5UubM3iDJ1RAAAAAElFTkSuQmCC" alt="" />

MapReduce ----倒排索引的更多相关文章

  1. 【Hadoop离线基础总结】MapReduce倒排索引建立

    MapReduce倒排索引建立 求某些单词在文章中出现多少次 有三个文档的内容,求hello,tom,jerry三个单词在其中各出现多少次 hello tom hello jerry hello to ...

  2. 大数据学习——mapreduce倒排索引

    数据 a.txt hello jerry hello tom b.txt allen tom allen jerry allen hello c.txt hello jerry hello tom 1 ...

  3. mapreduce 倒排索引的建立

    大道至简 http://blog.csdn.net/hguisu/article/details/7969757 1.map的输入 key: 文档 id   value: 文档内容 输出: key   ...

  4. 使用MapReduce实现一些经典的案例

    在工作中,很多时候都是用hive或pig来自动化执行mr统计,但是我们不能忘记原始的mr.本文记录了一些通过mr来完成的经典的案例,有倒排索引.数据去重等,需要掌握. 一.使用mapreduce实现倒 ...

  5. MapReduce实例-倒排索引

    环境: Hadoop1.x,CentOS6.5,三台虚拟机搭建的模拟分布式环境 数据:任意数量.格式的文本文件(我用的四个.java代码文件) 方案目标: 根据提供的文本文件,提取出每个单词在哪个文件 ...

  6. [置顶] MapReduce 编程之 倒排索引

    本文调试环境: ubuntu 10.04 , hadoop-1.0.2 hadoop装的是伪分布模式,就是只有一个节点,集namenode, datanode, jobtracker, tasktra ...

  7. mapreduce (三) MapReduce实现倒排索引(二)

    hadoop api http://hadoop.apache.org/docs/r1.0.4/api/org/apache/hadoop/mapreduce/Reducer.html 改变一下需求: ...

  8. MapReduce的倒排索引

    MapReduce的倒排索引 索引: 什么是索引:索引(Index)是帮助数据库高效获取数据的数据结构.索引是在基于数据库表创建的,它包含一个表中某些列的值以及记录对应的地址,并且把这些值存储在一个数 ...

  9. MapReduce中的倒排索引

    0.倒排索引资料: http://blog.csdn.net/pzasdq/article/details/51442856 1.三个日志源文件: a.txt hello tom hello jerr ...

随机推荐

  1. 小程序this.setData

    data: { isChecked: [ { key: true },{ key: true },{ key: true} ]} 如上,如果我想动态修改isChecked里面指定某个下标的值怎么办? ...

  2. Java并发编程之AQS

    一.什么是AQS AQS(AbstractQueuedSynchronize:队列同步器)是用来构建锁或者其他同步组件的基础框架,很多同步类都是在它的基础上实现的,比如常用的ReentrantLock ...

  3. Chapter 4 Invitations——6

    The snow washed away for good after that one dangerously icy day. 在危险的冰天雪地之后,这场雪洗走了很多. Mike was disa ...

  4. .NET CoreCLR 源码调试

    https://github.com/dotnet/coreclr/blob/master/Documentation/building/windows-instructions.md https:/ ...

  5. 学会这个删库再也不用跑路了~ --技术流ken

    前言 相信每一个学IT的人或多或少都听说过从删库到跑路这个梗~下图也是在各种交流群屡禁不止,新人听着也是瑟瑟发抖. 人们茶余饭后,街头巷角难免要问... 下面技术流ken就教给各位新手们一招删库再也不 ...

  6. spark集群的简单测试和基础命令的使用

    写此篇文章之前,已经搭建好spark集群并测试成功: spark集群搭建文章链接:http://www.cnblogs.com/mmzs/p/8193707.html 一.启动环境 由于每次都要启动, ...

  7. WPF Grid布局

    本节讲述布局,顺带加点样式给大家看看~单纯学布局,肯定是枯燥的~哈哈 那如上界面,该如何设计呢? 1.一些布局元素经常用到.Grid StackPanel Canvas WrapPanel等.如上这种 ...

  8. php中的for 和foreach性能对比

    总体来说,如果数据库过几十万了,才能看出来快一点还是慢一点,如果低于10万的循环,就不用测试了,两者性差异不明显.但是我还是推荐用foreach.循环数字数组时,for需要事先count($arr)计 ...

  9. js如何发送wss协议的请求,以及接受服务器返回的数据

    今天遇到问题,以往都是请求http协议的url,现在请求变成了wss的,用以前那种ajax的方式不可以发送和接受.然后查阅相关资料解决了这个问题,在这记录一下解决办法,使用的是websocket. & ...

  10. JavaScript解析机制与闭包原理实例详解

    js代码解析机制: js代码解析之前会创建一个如下的词法环境对象(仓库):LexicalEnvironment{ } 在扫描js代码时会把: 1.用声明的方式创建的函数的名字; 2.用var定义的变量 ...