写在前面

准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正。

如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn

聚类鸢尾花数据

ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法
v0.7 动态 API 最新版 控制台应用程序 .txt 文件 聚类鸢尾花 聚类 K-means++

在这个介绍性示例中,您将看到如何使用ML.NET将不同类型鸢尾花划分为不同组。在机器学习的世界中,这个任务被称为群集

问题

为了演示聚类API的实际作用,我们将使用三种类型的鸢尾花:setosa、versicolor和versicolor。它们都存储在相同的数据集中。尽管这些花的类型是已知的,我们将不使用它,只对花的参数,如花瓣长度,花瓣宽度等运行聚类算法。这个任务是把所有的花分成三个不同的簇。我们期望不同类型的花属于不同的簇。

模型的输入使用下列鸢尾花参数:

  • petal length
  • petal width
  • sepal length
  • sepal width

ML 任务 - 聚类

聚类的一般问题是将一组对象分组,使得同一组中的对象彼此之间的相似性大于其他组中的对象。

其他一些聚类示例:

  • 将新闻文章分为不同主题:体育,政治,科技等。
  • 按购买偏好对客户进行分组。
  • 将数字图像划分为不同的区域以进行边界检测或物体识别。

聚类看起来类似于多类分类,但区别在于对于聚类任务,我们不知道过去数据的答案。 因此,没有“导师”/“主管”可以判断我们的算法的预测是对还是错。 这种类型的ML任务称为无监督学习

解决方案

要解决这个问题,首先我们将建立并训练ML模型。 然后我们将使用训练模型来预测鸢尾花的簇。

1. 建立模型

建立模型包括:上传数据(使用TextLoader加载iris-full.txt),转换数据以便ML算法(使用Concatenate)有效地使用,并选择学习算法(KMeans)。 所有这些步骤都存储在trainingPipeline中:

//Create the MLContext to share across components for deterministic results
MLContext mlContext = new MLContext(seed: 1); //Seed set to any number so you have a deterministic environment // STEP 1: Common data loading configuration
TextLoader textLoader = mlContext.Data.TextReader(new TextLoader.Arguments()
{
Separator = "\t",
HasHeader = true,
Column = new[]
{
new TextLoader.Column("Label", DataKind.R4, 0),
new TextLoader.Column("SepalLength", DataKind.R4, 1),
new TextLoader.Column("SepalWidth", DataKind.R4, 2),
new TextLoader.Column("PetalLength", DataKind.R4, 3),
new TextLoader.Column("PetalWidth", DataKind.R4, 4),
}
}); IDataView fullData = textLoader.Read(DataPath); //STEP 2: Process data transformations in pipeline
var dataProcessPipeline = mlContext.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth"); // STEP 3: Create and train the model
var trainer = mlContext.Clustering.Trainers.KMeans(features: "Features", clustersCount: 3);
var trainingPipeline = dataProcessPipeline.Append(trainer);

2. 训练模型

训练模型是在给定数据上运行所选算法的过程。 要执行训练,您需要调用Fit()方法。

var trainedModel = trainingPipeline.Fit(trainingDataView);

3. 使用模型

在建立和训练模型之后,我们可以使用Predict()API来预测鸢尾花的簇,并计算从给定花参数到每个簇(簇的每个质心)的距离。

                // Test with one sample text
var sampleIrisData = new IrisData()
{
SepalLength = 3.3f,
SepalWidth = 1.6f,
PetalLength = 0.2f,
PetalWidth = 5.1f,
}; // Create prediction engine related to the loaded trained model
var predFunction = trainedModel.MakePredictionFunction<IrisData, IrisPrediction>(mlContext); //Score
var resultprediction = predFunction.Predict(sampleIrisData); Console.WriteLine($"Cluster assigned for setosa flowers:" + resultprediction.SelectedClusterId);

ML.NET 示例:聚类之鸢尾花的更多相关文章

  1. ML.NET 示例:聚类之客户细分

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  2. ML.NET 示例:开篇

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  3. ML.NET 示例:目录

    ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn 英文原版请访问:https://github.com/ ...

  4. ML.NET 示例:多类分类之鸢尾花分类

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  5. ML.NET 示例:深度学习之集成TensorFlow

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  6. ML.NET 示例:推荐之场感知分解机

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  7. ML.NET 示例:推荐之One Class 矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  8. ML.NET 示例:推荐之矩阵分解

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  9. ML.NET 示例:回归之销售预测

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

随机推荐

  1. leetcode-69.x的平方根

    leetcode-69.x的平方根 Points 二分查找 牛顿迭代 题意 实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保 ...

  2. Apache httpd.conf配置文件主要内容解释

    1 ServerRoot 配置 ["ServerRoot" 主要用于指定Apache的安装路径,此选项参数值在安装Apache时系统会自动把Apache的路径写入.Windows安 ...

  3. turnserver 配置说明记录

    coTurn工程提供了较完整的STUN和TURN服务,记录其主要的命令行参数配置说明 针对TURN/STUN服务进程turnserver.exe的使用参数做简单说明 -L 监听的IP地址 -p 监听端 ...

  4. Spark数据倾斜及解决方案

    一.场景 1.绝大多数task执行得都非常快,但个别task执行极慢.比如,总共有100个task,97个task都在1s之内执行完了,但是剩余的task却要一两分钟.这种情况很常见. 2.原本能够正 ...

  5. java导出数据到excel里:直接导出和导出数据库数据

    一.直接导出 package com.ij34.util; import java.io.FileNotFoundException; import java.io.FileOutputStream; ...

  6. ATM-简单SQL查询

    use master go if exists(select * from sysDatabases where name = 'BankDB') drop database BankDB go cr ...

  7. AI学习---基于TensorFlow的案例[实现线性回归的训练]

    线性回归原理复习 1)构建模型               |_> y = w1x1 + w2x2 + -- + wnxn + b        2)构造损失函数               | ...

  8. 新安装 Ubuntu 系统设置root用户密码!谨此纪念自己踩过的坑!

    Ubuntu 在安装过程中创建的用户为普通用户,而root 用户密码该如何设置呢? 执行以下命令即可: sudo passwd root 提示你输入普通用户密码,然后设置root用户的密码!这样,就更 ...

  9. virtualbox+ievms:还你一个原装IE8

    在web开发中,不可避免的一件事是浏览器兼容性问题,你永远无法想象项目正式上线后,坐在电脑前操作这套系统的人用的是什么版本的浏览器,IE(7,8,...),360,Chrome,火狐等,后面几个还好说 ...

  10. ant.design React使用Echarts,实力踩坑

    最近项目用到Echarts(以下用ec代替),于是照猫画虎得引入到团队的antd项目中,但是遇到2个棘手问题: 1. ec对dom不渲染,检查后发现,原来是全局存在id重复,所以使用React时,最好 ...