AtCoder Regular Contest 108
Contest Link Official Editorial
A - Sum and Product
Given are integers \(S\) and \(P\) . Is there a pair of positive integers \((N,M)\) such that \(N+M=S\) and \(N×M=P\) ?
Solution
签到题。 \(1e9\) 不能直接枚举,那么就枚举 \(P\) 较小的约数即可。
Code
//Author: RingweEH
S=read(); P=read(); ll lim=sqrt(P);
for ( ll i=1; i<=lim; i++ )
{
if ( P%i ) continue;
ll j=P/i;
if ( (i+j)==S ) { printf( "Yes\n" ); return 0; }
}
printf( "No\n" );
B - Abbreviate Fox
Given is a string \(S\) of length \(N\) consisting of lowercase English letters. Snuke can do this operation any number of times: remove fox
occurring as a substring from \(s\) and concatenate the remaining parts of \(s\) .
What is the minimum possible length of \(s\) after some number of operations by Snuke?
Solution
我是乱搞过的……不知道 WA+TLE
了多少发。具体就是由于新出现的 fox
只能在删掉的地方,所以考虑每次删掉一个就把两边的搞一遍。
然后再加了个暴力捡漏??
正解:令 \(t\) 初始为一个空串,然后重复下面的步骤直到 \(s\) 为空串:
- 把 \(s\) 的第一个字符移动到 \(t\) 的末尾,如果 \(t\) 的末尾出现
fox
那么删除掉并计入答案。
妙啊。
Code
//Author: RingweEH
//乱搞代码
int check( int pos )
{
if ( s[pos]=='f' ) return 1;
if ( s[pos]=='o' ) return 2;
if ( s[pos]=='x' ) return 3;
return 0;
}
int repos( int l,int r )
{
while ( 1 )
{
if ( l<0 || r>=n ) return r;
if ( vis[l] || vis[r] ) return r;
int cl=check(l),cr=check(r);
if ( !cl || !cr ) return r;
if ( (cl!=2) && (cr!=2) ) return r;
if ( (cl==2) && (cr==2) ) return r;
if ( cl==2 )
{
if ( (l==0) || vis[l-1] ) return r;
l--; cl=check(l);
if ( cl!=1 ) return r;
if ( cr!=3 ) return r;
cnt++; vis[l]=1; vis[l+1]=1; vis[r]=1; l--; r++;
}
if ( cr==2 )
{
if ( (r>=(n-1)) || vis[r+1] ) return r;
r++; cr=check(r);
if ( cr!=3 ) return r-1;
if ( cl!=1 ) return r-1;
cnt++; vis[l]=1; vis[r-1]=1; vis[r]=1; l--; r++;
}
}
}
int main()
{
n=read(); cin>>s; //scanf( "%s",s );
memset( vis,0,sizeof(vis) );
for ( int i=0; i<n-2; i++ )
{
if ( vis[i] ) continue;
if ( (s[i]=='f') && (s[i+1]=='o') && (s[i+2]=='x') )
{
cnt++; vis[i]=1; vis[i+1]=1; vis[i+2]=1; i=repos( i-1,i+3 )-1;
}
}
string s2="";
for ( int i=0; i<n; i++ )
if ( !vis[i] ) s2=s2+s[i];
while( s2.find("fox")!=-1 )
{
s2.erase( s2.find("fox"),3 ); n -= 3;
}
printf( "%d",n-cnt*3 );
}
C - Keep Graph Connected
Given is an undirected connected graph with \(N\) vertices numbered 11 to \(N\), and \(M\) edges numbered \(1\) to \(M\) . The given graph may contain multi-edges but not self loops.
Each edge has an integer label between \(1\) and \(N\) (inclusive). Edge \(i\) has a label \(c_i\) , and it connects Vertex \(u_i\) and \(v_i\) bidirectionally.
Snuke will write an integer between \(1\) and \(N\) (inclusive) on each vertex (multiple vertices may have the same integer written on them) and then keep only the edges satisfying the condition below, removing the other edges.
Condition: Let \(x\) and \(y\) be the integers written on the vertices that are the endpoints of the edge. Exactly one of \(x\) and \(y\) equals the label of the edge.
We call a way of writing integers on the vertices good if (and only if) the graph is still connected after removing the edges not satisfying the condition above. Determine whether a good way of writing integers exists, and present one such way if it exists.
Solution
先在图上求一棵生成树,然后构造。如果不存在生成树就无解。
设点 \(1\) 为根,任意涂色,然后向下 \(\text{dfs}\) 。对于一条边 \((u,v,w)\) ,如果 \(tag[x]==w\) 那么给 \(v\) 任意涂色,否则 \(tag[v]=w\) ,这样即可构造出合法解。
Code
为什么把 add( read(),read(),read() )
改成 u=read(),v=read(),w=read(),add( u,v,w );
就 Accepted 了啊……没明白诶。
哦,它是函数啊,那没事了。
//Author: RingweEH
void dfs( int u )
{
for ( int i=head[u]; i; i=e[i].nxt )
{
int v=e[i].to;
if ( !tag[v] )
{
if ( tag[u]==e[i].val ) tag[v]= ( tag[u]==1 ) ? 2 : 1;
else tag[v]=e[i].val;
dfs( v );
}
}
}
D - AB
Given are an integer \(N\) and four characters \(cAA\) , \(cAB\) , \(cBA\) and \(cBB\) . Here, it is guaranteed that each of those four characters is A
or B
.
Snuke has a string \(s\) , which is initially AB
.
Let \(|s|\) denote the length of \(s\). Snuke can do the four kinds of operations below zero or more times in any order:
- Choose \(i\) such that \(1≤i<|s|\) , \(s_i\) =
A
, \(s_{i+1}\) =A
and insert \(cAA\) between the \(i\)-th and \((i+1)\)-th characters of \(s\) . - Choose \(i\) such that \(1≤i<|s|\) , \(s_i\) =
A
, \(s_{i+1}\) =B
and insert \(cAB\) between the \(i\)-th and \((i+1)\)-th characters of \(s\). - Choose \(i\) such that \(1≤i<|s|\) , \(s_i\) =
B
, \(s_{i+1}\) =A
and insert \(cBA\) between the \(i\)-th and \((i+1)\)-th characters of \(s\). - Choose \(i\) such that \(1≤i<|s|\) , \(s_i\) =
B
, \(s_{i+1}\) =B
and insert \(cBB\) between the \(i\)-th and \((i+1)\)-th characters of \(s\).
Find the number, modulo \((10^9+7)\) , of strings that can be \(s\) when Snuke has done the operations so that the length of \(s\) becomes \(N\) .
Solution
发现只有 4 种变化,一共16种情况。可以大力分讨一下。
- \(cAB=A,cAA=A\) ,最终答案一定是 \(AAAAA...B\) ,答案就是1.
- \(cAB=A,cAA=B,cBA=A\) ,发现:开头是 \(A\) ,结尾是 \(AB\) ,没有连续的 \(B\) . 那么就是 \(A....AB\) ,中间是不含连续 \(0\) 的 \(01\) 串,就是斐波那契数列的 \(n-2\) 项。
- \(cAB=A,cAA=B,cBA=B\) ,发现开头是 \(A\) ,结尾是 \(BB\) ,答案就是 \(2^{n-3}\) .
- \(cAB=B,cBB=B\) ,答案一定是 \(ABB...B\) ,为 1.
- \(cAB=B,cBB=A,cBA=A\) ,答案是 \(2^{n-3}\) .
- \(cAB=B,cBB=A,cBA=B\) ,答案是 \(fib(n-2)\)
Code
//Author: RingweEH
void power()
{
int b=n-3,res=1;
for ( int i=1; i<=b; i++ )
res=res*2%mod;
printf( "%d\n",res );
}
void fib()
{
int b=n-3,a1=1,a2=1;
for ( int i=1; i<=b; i++ )
{
int tmp=(a1+a2)%mod;
a1=a2; a2=tmp;
}
printf( "%d\n",a2 );
}
E - Random IS
There are \(N\) isu - chairs in Japanese - arranged from left to right. The \(i\)-th chair from the left has the ID number \(a_i\) . Here, it is guaranteed that \(a_i\) are distinct.
Snuke has decided to mark some of the chairs and throw away the rest. Initially, no chair is marked. We call a choice of marked chairs good when the IDs of the marked chairs are monotonically increasing from left to right.
Snuke has decided to do the following procedure to mark chairs:
- We say a chair \(x\) to be nice if (and only if) the choice of marked chairs is still good when \(x\) gets marked. Let \(k\) be the current number of nice chairs.
- If \(k=0\) , remove the unmarked chairs and terminate the procedure. Otherwise, choose one from the \(k\) nice chairs with equal probability, mark it, and go back to Step 1.
It can be proved that the expected value of the number of chairs that remain at the end of the procedure is a rational number. Let this value be \(P/Q\) , an irreducible fraction. Additionally, let \(M=10^9+7\) . Then, we can prove that there uniquely exists an integer \(R\) between \(0\) and \(M−1\) (inclusive) such that \(P≡Q×R(modM)\) , and that value equals \(P×Q−1(modM)\) , where \(Q−1\) is the modular multiplicative inverse of \(Q\). Find \(R\) .
定义大小为 \(n\) 的排列 \(a\) 的一个子序列 \(b\) 是好的当且仅当 \(b\) 递增,对于 \(a\) 的子序列 \(b\) 而言,定义一个数 \(i\) 是好的当且仅当 \(a_i\) 加入 \(b\) 后 \(b\) 仍然递增,现在给定 \(n\) 和排列 \(a\) ,你有一个 \(a\) 的子序列 \(b\) ,初始为空,每次操作你会在所有好的数中选择等概率随机一个好的数 \(i\) 并将 \(a_i\) 加入 \(b\) ,询问期望操作次数。
\(1≤n≤2000\) 。
Solution
一开始根本没看懂题
首先在两边补充两个点 \(a_0=0,a_{n+1}=n+1\) .
令 \(f[i][j]\) 表示只考虑 \((i,j)\) 的元素且钦定选了 \(a[i],a[j]\) 的期望个数。那么答案就就是 \(f[0][n+1]\) .
考虑枚举中间第一次选了 \(a[k](a[i]<a[k]<a[j])\) .
显然,易知两边的区间是独立的,期望值可以直接相加,那么有:
\]
其中 \(cnt\) 为满足 \(a[i]<a[k]<a[j]\) 的 \(k\) 的个数。特殊地,如果 \(cnt=0\) 那么 \(f[i][j]=0\) .
由此,我们可以分别考虑 \(\sum_kf[i][k]\) 和 \(\sum_kf[k][j]\) .发现这个东西其实是对称的,那么就只需要计算对于每个 \((i,j)\) ,满足 \(a[k]<a[j]\) 的 \(f[i][k]\) 之和即可。用树状数组维护。对 \(cnt\) 的计算可以使用二维前缀和。
时间复杂度 \(\mathcal{O}(N^2logN)\) .
Code
//Author: RingweEH
void add( int *arr,int pos,int val )
{
for ( ; pos<=n; pos+=lowbit(pos) )
arr[pos]=(arr[pos]+val)%mod;
}
int query( int *arr,int pos )
{
int res=0;
for ( ; pos; pos-=lowbit(pos) )
res=(res+arr[pos])%mod;
return res;
}
int main()
{
n=read();
for ( int i=1; i<=n; i++ )
{
for ( int j=1; j<=n; j++ )
s[i][j]=s[i-1][j];
a[i]=read();
for ( int j=a[i]; j<=n; j++ )
s[i][j]++;
}
inv[1]=1;
for ( int i=2; i<=n; i++ )
inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
a[0]=0; a[n+1]=n+1;
for ( int k=2; k<=n+2; k++ )
{
for ( int i=0; i+k<=n+1; i++ )
{
int j=i+k;
if ( a[i]>a[j] ) continue;
int cnt=s[j-1][a[j]-1]-s[j-1][a[i]]-s[i][a[j]-1]+s[i][a[i]];
if ( !cnt ) continue;
int val=((ll)(query(tr1[i],a[j]-1)+query(tr2[j],n-a[i]))*inv[cnt]+1)%mod;
if ( j<=n ) add( tr1[i],a[j],val );
if ( i>=1 ) add( tr2[j],n-a[i]+1,val );
if ( i==0 && j==n+1 ) printf( "%d\n",val );
}
}
}
F - Paint Tree
Given is a tree with \(N\) vertices numbered \(1\) to \(N\), and \(N−1\) edges numbered \(1\) to \(N−1\) . Edge \(i\) connects Vertex \(a_i\) and \(b_i\) bidirectionally and has a length of \(1\) .
Snuke will paint each vertex white or black. The niceness of a way of painting the graph is \(max(X,Y)\) , where \(X\) is the maximum among the distances between white vertices, and \(Y\) is the maximum among the distances between black vertices. Here, if there is no vertex of one color, we consider the maximum among the distances between vertices of that color to be \(0\) .
There are \(2^N\) ways of painting the graph. Compute the sum of the nicenesses of all those ways, modulo \((10^9+7)\) .
Solution
所以题意就是求所有染色方案下白色直径和黑色直径中较大值的和。
考虑一条直径,设两端为 \(u_1,u_2\) ,并钦定 \(u_1=black\) .
如果两点颜色相同则贡献为 \(dis[u_1][u_2]\times 2^{N-2}\) 。
如果不同,易知答案一定是 \(u_1,v\) 或者 \(u_2,v\) 之间的距离。( \(v\) 为任意点)
记 \(dis[i][0]\) 为 \(i\) 到 \(u_1\) 的距离,\(dis[i][1]\) 为 \(i\) 到 \(u_2\) 的距离。最终答案就是 \(\sum\max(dis[i][0],dis[i][1])\)
考虑枚举这个最大值,尝试求出 “存在多少方案所选的最大值不大于这个数”,记为 \(f[i]\) .
那么有
\]
如果存在某一对 \(dis[i][0],dis[i][1]\) 均大于 \(i\) ,那么 \(f[i]=0\) . 处理了这种特殊情况后,再令 \(g[i]=\max(dis[i][0],dis[i][1])\) ,有
\]
直接对 \(g\) 排序,然后扫一遍即可得到 \(f[i]\) .
最终答案等于
\]
其中 \(D\) 为直径长度。
Code
//Author: RingweEH
void dfs( ll u,ll fa )
{
dep[u]=dep[fa]+1;
for ( ll v : gg[u] )
if ( v!=fa ) dfs( v,u );
}
int main()
{
n=read();
for ( ll i=1,u,v; i<n; i++ )
u=read(),v=read(),gg[u].push_back(v),gg[v].push_back(u);
//---------------------beginning-------------------------
dep[0]=-1; dfs( 1,0 );
ll u1=-1,mx=0;
for ( ll i=1; i<=n; i++ )
if ( dep[i]>mx ) mx=dep[i],u1=i;
dfs( u1,0 );
for ( ll i=1; i<=n; i++ )
dis1[i]=dep[i];
ll u2=-1; mx=0;
for ( ll i=1; i<=n; i++ )
if ( dep[i]>mx ) mx=dep[i],u2=i;
dfs( u2,0 );
for ( ll i=1; i<=n; i++ )
dis2[i]=dep[i];
//------------------------diameter---------------------------
ll gcnt=0;
for ( ll i=1; i<=n; i++ )
if ( i!=u1 && i!=u2 ) g[++gcnt]=max( dis1[i],dis2[i] );
sort( g+1,g+1+gcnt ); ll lim=0;
for ( ll i=1; i<=n; i++ )
lim=max( lim,min(dis1[i],dis2[i]) );
//-----------------------get_g---------------------------------
for ( ll i=mx; i>=lim; i-- )
{
while ( gcnt>=1 && g[gcnt]>i ) gcnt--;
f[i]=power(2,gcnt);
}
//----------------------get_f----------------------------------
ll tmp=0,ans=0;
for ( ll i=lim; i<=mx; i++ )
{
f[i]=((f[i]-tmp)%mod+mod)%mod;
tmp=(tmp+f[i])%mod;
ans=(ans+f[i]*i)%mod;
}
ans=(ans+mx*power(2,n-2) )%mod;
//--------------------get_ans-----------------------------
printf( "%lld",ans*2%mod );
}
AtCoder Regular Contest 108的更多相关文章
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
- AtCoder Regular Contest 094
AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...
- AtCoder Regular Contest 095
AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...
- AtCoder Regular Contest 102
AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...
- AtCoder Regular Contest 096
AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...
- AtCoder Regular Contest 097
AtCoder Regular Contest 097 C - K-th Substring 题意: 求一个长度小于等于5000的字符串的第K小子串,相同子串算一个. K<=5. 分析: 一眼看 ...
随机推荐
- TypeScript注意
中文文档中,元组目前已经不能越界访问
- JAVA学习准备
Java学习准备 MarkDown语法学习 字体 hello,world! hello,world! hello,world! 引用 即使最小的帆也能远航 分割线 图片 超链接 点击跳转到我的邮箱 列 ...
- oracle 11g 配置口令复杂度
oracle 11g 配置口令复杂度 使用ORACLE自带的utlpwdmg.sql脚本来实现 找到本地的utlpwdmg.sql脚本 find / -name utlpwdmg.sql 查看 /ho ...
- 直面秋招!非科班生背水一战,最终拿下阿里等大厂offer!
前言 2020年已经接近到9月份了,很多粉丝朋友都对金九银十雀雀欲试了吧!也有很多朋友向我求教经验,因为我自己工作相对于稳定,在这里给大家分享一个粉丝朋友的经历,他作为一个曾经的菜鸡面试者,在不断的失 ...
- NO.A.0010——Windows常用快捷键使用教程
小娜操作: Win + C: 打开Cortana微软小娜,并开始聆听...... Win + Q: 打开Cortana: Win + S: 打开Cortana:sdfghjkrtgyh XBOX操作: ...
- Ubuntu16.04安装搜狗输入法报错:dkpg:处理归档sogoupinyin.deb(--install)时出错,安装sogoupinyin将破坏fcitx-ui-qimpanel
系统:ubuntu16.04 事件:安装搜狗拼音时报错 报错信息(ubuntu语言是英文的报错信息): dpkg: regarding sogoupinyin_2.3.2.07_amd64-831.d ...
- 从维基百科等网站复制数据和公式到MathType里编辑
在我们写论文的时候,经常会需要用一些实际案例以及数据,而这些数据和案例有很大一部分可以直接在网络上找到.但是有时候也会发现我们想要的内容和公式,从网页上复制粘贴后太模糊,不适合打印和投影.就需要我们将 ...
- 如何使用Camtasia进行电脑录制屏幕
在现在的网络互联网时代,越来越多的人走上了自媒体的道路.有些自媒体人会自己在网络上录制精彩视频,也有一些人会将精彩.热门的电影剪辑出来再加上自己给它的配音,做成大家喜欢看的电影剪辑片段.相信不管大家是 ...
- 【PYTEST】第一章常用命令
pytest入门 安装pytest 运行pytest pytest常用命令 1. 安装pytest pip install pytest 2. 运行pytest 2.1 pytest默认搜索当前目录下 ...
- 执行文件异常报错:ImportError: attempted relative import with no known parent package
这个问题困扰了我很久了,网上的解决方法都很一致,找来找去都是一样的解决方法,在导入包的文件和执行文件加入 1 print('__file__={0:<35} | __name__={1:< ...