笔记-[AH2017/HNOI2017]礼物

[AH2017/HNOI2017]礼物


\[\begin{split}
ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\
=&\sum_{j=1}^n(a_j^2+b_j^2+i^2-2a_jb_j+2ia_j-2ib_j)\\
=&\sum_{j=1}^na_j^2+\sum_{j=1}^nb_j^2+ni^2+2i\sum_{j=1}^na_j-2i\sum_{j=1}^nb_j-2\sum_{j=1}^na_jb_j\\
\end{split}
\]

#include <bits/stdc++.h>
using namespace std; //Start
#define lng long long
#define db double
#define mk make_pair
#define pb push_back
#define fi first
#define se second
#define rz resize
const int inf=0x3f3f3f3f;
const lng INF=0x3f3f3f3f3f3f3f3f; //Data
const int N=3e5;
int n,m;
lng sa,saa,sb,sbb,sab[N+7],ans=INF; //FFT
const db Pi=acos(-1);
typedef pair<db,db> cp;
cp operator+(const cp a,const cp b){return mk(a.fi+b.fi,a.se+b.se);}
cp operator-(const cp a,const cp b){return mk(a.fi-b.fi,a.se-b.se);}
cp operator*(const cp a,const cp b){return mk(a.fi*b.fi-a.se*b.se,a.fi*b.se+a.se*b.fi);}
vector<cp> a(N+7),b(N+7);
int lim=1,ln,r[N+7];
void FFT(vector<cp>&f,int t){
for(int i=0;i<lim;i++)if(i<r[i]) swap(f[i],f[r[i]]);
for(int mid=1;mid<lim;mid<<=1){
cp wn(mk(cos(Pi/mid),sin(Pi/mid)*t));
for(int j=0;j<lim;j+=(mid<<1)){
cp w(mk(1,0));
for(int k=j;k<mid+j;w=w*wn,k++){
cp x(f[k]),y(w*f[mid+k]);
f[k]=x+y,f[mid+k]=x-y;
}
}
}
} //Main
int main(){
scanf("%d%d",&n,&m);
for(int i=1,x;i<=n;i++)
scanf("%d",&x),a[n+i].fi=a[i].fi=x,sa+=x,saa+=1ll*x*x;
for(int i=1,x;i<=n;i++)
scanf("%d",&x),b[n+1-i].fi=x,sb+=x,sbb+=1ll*x*x;
while(lim<=((n<<1)+n)) lim<<=1,ln++;
for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(ln-1));
FFT(a,1),FFT(b,1);
for(int i=0;i<lim;i++) a[i]=a[i]*b[i];
FFT(a,-1);
for(int i=0;i<lim;i++) sab[i]=a[i].fi/lim+0.5;
for(int i=1;i<=n;i++)
for(int j=-m;j<=m;j++)
ans=min(ans,saa+sbb+n*j*j+2ll*j*sa-2ll*j*sb-2ll*sab[i+n]);
printf("%lld\n",ans);
return 0;
}

笔记-[AH2017/HNOI2017]礼物的更多相关文章

  1. P3723 [AH2017/HNOI2017]礼物

    题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...

  2. 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告

    P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...

  3. [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)

    题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...

  4. [AH2017/HNOI2017]礼物(FFT)

    题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一 ...

  5. [AH2017/HNOI2017]礼物

    题解: 水题 化简一波式子会发现就是个二次函数再加上一个常数 而只有常数中的-2sigma(xiyi)是随移动而变化的 所以只要o(1)求出二次函数最大值然后搞出sigma(xiyi)就可以了 这个东 ...

  6. 【文文殿下】[AH2017/HNOI2017]礼物

    题解 二项式展开,然后暴力FFT就好了.会发现有一个卷积与c无关,我们找一个最小的项就行了. Tips:记得要倍长其中一个数组,防止FFT出锅 代码如下: #include<bits/stdc+ ...

  7. BZOJ4827:[AH2017/HNOI2017]礼物——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面 ...

  8. Luogu 3723 [AH2017/HNOI2017]礼物

    BZOJ 4827 $$\sum_{i = 1}^{n}(x_i - y_i + c)^2 = \sum_{i = 1}^{n}(x_i^2 + y_i^2 + c^2 - 2 * x_iy_i + ...

  9. 【[AH2017/HNOI2017]礼物】

    题目 又是我不会做的题了 看看柿子吧 \[\sum(a_i+c-b_i)^2\] 最小化这个柿子 之所以不写下标是因为我们这个\(\{a\},\{b\}\)可以循环同构 那就开始化吧 \[\sum(a ...

随机推荐

  1. TCP粘包问题的解决方案02——利用readline函数解决粘包问题

      主要内容: 1.read,write 与 recv,send函数. recv函数只能用于套接口IO ssize_t recv(int sockfd,void * buff,size_t len,i ...

  2. Kafka高性能揭秘:sequence IO、PageCache、SendFile的应用详解

    大家都知道Kafka是将数据存储于磁盘的,而磁盘读写性能往往很差,但Kafka官方测试其数据读写速率能达到600M/s,那么为什么Kafka性能会这么高呢? 首先producer往broker发送消息 ...

  3. "三剑客"之awk心中无剑

    一.awk介绍 awk 是一种程序语言. 它具有一般程序语言常见的功能. 因awk语言具有某些特点, 如 : 使用直译器(Interpreter)不需先行编译; 变量无类型之分(Typeless), ...

  4. ccpc2020长春站F题 Strange Memory

    dsu on tree 题目链接 点我跳转 题目大意 给定一棵包含 \(n\) 个节点的树,每个节点有个权值 \(a_i\) 求\(∑_{i=1}^n∑_{j=i+1}^n[a_i⊕a_j=a_{lc ...

  5. 在FL Studio中制作和优化人声和弦(Vocal Chords)

    人声和弦在Future Bass.Melodic Dubstep等类型的电子音乐中被常用.与一般的和弦相同,其主要起到为主旋律做铺垫的效果,但是人声和弦加入了人声的因素,可以使得和弦更有趣,更有电子音 ...

  6. 【Vue】1.前端项目初始化

    1.前提 安装nodejs: https://nodejs.org/en/, 安装LTS稳定版本 安装Vscode: https://code.visualstudio.com/ 2.安装Vue脚手架 ...

  7. 【P4178】Tree——点分治

    (题面来自luogu) 题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入格式 N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 ...

  8. Java基础教程——缓冲流

    缓冲流 "缓冲流"也叫"包装流",是对基本输入输出流的增强: 字节缓冲流: BufferedInputStream , BufferedOutputStream ...

  9. java Base64算法

    Base64算法并不是加密算法,他的出现是为了解决ASCII码在传输过程中可能出现乱码的问题.Base64是网络上最常见的用于传输8bit字节码的可读性编码算法之一.可读性编码算法不是为了保护数据的安 ...

  10. mfc 笔记

    在类成员初始化时,使用另一个成员变量,必须满足,在.h声明时在另一个变量之后,初始 .hprivate: //K线图位置 CPoint m_KPoint; //十字光标位置 CPoint m_trac ...