5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法
LINK:月下柠檬树
之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了.
辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算几何.
求面积的并也没有什么好的方法 不能使用半平面交 因为不是一个凸多边形.
决定使用辛普森之后 容易想到 要求出 函数f(x)的式子.
考虑 当x处于一个圆中时 容易求得f(x) 利用勾股定理即可 考虑在梯形内时 容易发现在两圆的公切线上.
求出公切线的解析式就完事了.这个问题 容易使用相似三角形等等解决。
之后需要确定 真正的范围 因为 圆可能向前或者向后覆盖.
辛普森的时候 每次求某个点的f(x)时 需要和圆或者函数取max.
然后就是常规积分了. 最难的可能是在求解析式的时候 需要仔细推.
const int MAXN=1010;
int n;
db A;//光和地面的夹角.
struct wy{db x;db r;}t[MAXN];
struct Line{db k,b,L,R;}q[MAXN];
inline db len(db a,db b)
{
return sq(a*a-b*b);
}
inline void get_tan(int x,int y)
{
if(fabs(r(x)-r(y))<=EPS)
{
q[x].L=x(x);
q[x].R=x(y);
q[x].k=0;q[x].b=r(x);
return;
}
db dx=x(y)-x(x),dr=fabs(r(x)-r(y));
//dx为两圆距离 dr 为那条边的长.
db ly,ry;
if(r(x)>r(y))
{
q[x].L=x(x)+r(x)*dr/dx;//求出cos
q[x].R=x(y)+(q[x].L-x(x))*r(y)/r(x);
ly=len(r(x),q[x].L-x(x));
ry=len(r(y),q[x].R-x(y));
q[x].k=(ry-ly)/(q[x].R-q[x].L);
q[x].b=ly-q[x].L*q[x].k;
}
else
{
q[x].R=x(y)-r(y)*dr/dx;
q[x].L=x(x)-(x(y)-q[x].R)*r(x)/r(y);
ly=len(r(x),q[x].L-x(x));
ry=len(r(y),q[x].R-x(y));
q[x].k=(ry-ly)/(q[x].R-q[x].L);
q[x].b=ly-q[x].L*q[x].k;
}
}
inline db F(db x)
{
db ans=0;
rep(1,n-1,i)if(x<x(i)+r(i)&&x>x(i)-r(i))ans=ans>len(r(i),x-x(i))?ans:len(r(i),x-x(i));
rep(1,n-1,i)if(x>=q[i].L&&x<=q[i].R)ans=ans>q[i].k*x+q[i].b?ans:q[i].k*x+q[i].b;
return ans;
}
db simpson(db a,db b)
{
db c=(a+b)/2.0;
return (b-a)*(F(a)+4*F(c)+F(b))/6.0;
}
db jf(db a,db b,db ans)
{
db c=(a+b)/2.0;
db L=simpson(a,c),R=simpson(c,b);
if(fabs(L+R-ans)<EPS)return L+R;
return jf(a,c,L)+jf(c,b,R);
}
int main()
{
//freopen("1.in","r",stdin);
gt(n);gi(A);//邻=对/tanA.
A=1/tan(A);
gi(x(1));x(1)*=A;
rep(2,n+1,i)gi(x(i)),x(i)*=A,x(i)+=x(i-1);
rep(1,n,i)gi(r(i));r(++n)=0.0;
rep(1,n-1,i)get_tan(i,i+1);
db ll=x(1)-r(1),rr=x(n);
rep(1,n,i)
{
rr=rr<x(i)+r(i)?x(i)+r(i):rr;
ll=ll>x(i)-r(i)?x(i)-r(i):ll;
}
printf("%.2lf\n",2*jf(ll,rr,simpson(ll,rr)));
return 0;
}
5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法的更多相关文章
- 5.21 省选模拟赛 luogu P4297 [NOI2006]网络收费 树形dp
LINK:网络收费 还是自己没脑子. 早上思考的时候 发现树形dp不可做 然后放弃治疗了. 没有合理的转换问题的模型是我整个人最大的败笔. 暴力也值得一提 爆搜之后可以写成FFT的形式的计算贡献的方法 ...
- 【洛谷】P4207 [NOI2005]月下柠檬树
题解 原来自适应simpson积分是个很简单的东西! 我们尝试分析一下影子,圆的投影还是圆,圆锥的尖投影成一个点,而圆台的棱是圆的公切线,我们把圆心投影出来,发现平面上圆心的距离是两两高度差/tan( ...
- 洛谷P4207 [NOI2005]月下柠檬树(计算几何+自适应Simpson法)
题面 传送门 题解 我还好奇自适应辛普森法干嘛用的呢--突然想起来积分的一个用处就是求曲边图形的面积-- 我们先来考虑一下这些投影是什么形状 一个圆的投影还是它自己 一个圆锥的投影是一个圆加上一个点, ...
- 省选模拟赛 4.26 T1 dp 线段树优化dp
LINK:T1 算是一道中档题 考试的时候脑残了 不仅没写优化 连暴力都打挂了. 容易发现一个性质 那就是同一格子不会被两种以上的颜色染.(颜色就三种. 通过这个性质就可以进行dp了.先按照左端点排序 ...
- 6.6 省选模拟赛 线段 二维数点问题 树套树 CDQ分治
LINK:线段 还是太菜了 没看出这道题真正的模型 我真是一个典型的没脑子选手. 考虑如何查询答案. 每次在一个线段x的状态被更改后 可以发现有影响的是 和x相连那段极长连续1子段. 设这个子段左端点 ...
- 5.20 省选模拟赛 T1 图 启发式合并 线段树合并 染色计数问题
LINK:图 在说这道题之前吐槽一下今天的日子 520 = 1+1+4+514. /cy 这道题今天做的非常失败 一点分都没拿到手 关键是今天的T3 把我整个人给搞崩了. 先考虑 如果得到了这么一张图 ...
- 4.9 省选模拟赛 生成树求和 变元矩阵树定理 生成函数 iDFT 插值法
有同学在loj上找到了加强版 所以这道题是可以交的.LINK:生成树求和 加强版 对于30分 爆搜 可实际上我爆搜只过了25分 有同学使用按秩合并并茶几的及时剪枝通过了30分. const int M ...
- 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...
- @省选模拟赛03/16 - T3@ 超级树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...
随机推荐
- 2.Unity3d常用按键
Unity3d常用按键和组合键: 1.鼠标左键:选中物体 2.鼠标中键:平移视角,和手型功能一样 3.鼠标右键:旋转观察角度 4.Alt+鼠标左键:旋转观察角度 5.Alt+鼠标右键:拉远拉近
- python虚拟环境 + 批量pip + 换源
python虚拟环境 + 批量pip + 换源 虚拟环境 曾经我是一个小白,不管运行什么项目都用一个环境,后来项目多了,有的是Django1.11的有的是Django2的,有的项目只能在3.6上运行, ...
- 数据可视化之powerBI基础(五)深入了解Power BI的跨页钻取交互
https://zhuanlan.zhihu.com/p/79036123 在 PowerBI 中还有一种有趣的交互方式:跨页钻取.它可以通过点击某个数据点,钻取到另一个页面,进一步展示该数据点的详细 ...
- 数据可视化之powerBI技巧(八)Power BI按多列排序的技巧
目前PowerBI的表格已经支持多列排序,但是矩阵依然还不支持按多个字段排序,虽然这个需求很普遍,这里利用DAX提供一个变通的实现方式. 模拟数据如下,有两个数据指标: 对类别首先按[指标一]进行排序 ...
- Spring入门案例
一.Spring基本介绍 1.什么是Spring Spring 是分层的 Java SE/EE 应用 full-stack 轻量级开源框架,以 IoC(Inverse Of Control: 反转控制 ...
- vscode安装rainbow-fart(彩虹屁)插件,程序员只能自我鼓励了!!!
2020-7-10更新 Rainbow Fart 插件现以发布到 VSCode 商店,安装过 VSIX 版本的用户请卸载之前的版本,从商店安装. 从 VSCode 扩展商店 下载并安装.(更新vsco ...
- (5)webpack中url-loader的使用
为什么要使用url-loader 在前面已经介绍了css文件可以使用第三方loader去加载. 在一个项目中,也不仅仅只有html,js和css文件,还有图片文件,字体文件等等.当我们给一个css样式 ...
- Python Ethical Hacking - VULNERABILITY SCANNER(6)
EXPLOITATION - XSS VULNS EXPLOITING XSS Run any javascript code. Beef framework can be used to hook ...
- 盘点 6 个被淘汰的 Java 技术,它们都曾经风光过!
大家好啊,今天栈长给大家分享下我的开发历程中,我知道的那些被淘汰的技术或者框架,有些我甚至都没有用过,但我知道它曾经风光过. 废话不多说,下面我要开始吹了-- 1.Swing 下面这个是用 swing ...
- 软件测试必备技能,带你学习jmeter!
一:jmeter用户变量设置: 1.在线程组鼠标右击--添加--配置元件-用户定义的变量, 2.根据业务需求自定义变量的名称,添加需要的变量和对应的值 3.在脚本对应位置添加参数 二:文件参数化: 两 ...