P1429 平面最近点对[加强版] 随机化
LINK:平面最近点对 加强版
有一种分治的做法 因为按照x排序分治再按y排序 可以证明每次一个只会和周边的六个点进行更新。
好像不算很难 这里给出一种随机化的做法。
前置知识是旋转坐标系 即以某个点位旋转中心旋转某个点的位置。
设旋转中心为(x2,y2).
旋转公式:x=(x1-x2)cos(a)-(y1-y2)sin(a)+x2;y=(x1-x2)sin(a)+(y1-y2)cos(a)+y2;
那么以原点为旋转中心 那其实是在旋转坐标系。
旋转之后考虑按照x排序 那么每个点向后面几个点暴力更新答案即可。
显然这是一个随机的过程 容易发现对于最小值得点对有极大几率可以被便利到 所以可以认为是正确.
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-8
#define sq sqrt
#define mod 1000000007
#define S second
#define F first
#define pf(x) ((x)*(x))
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const int MAXN=200010;
const db Pi=acos(-1.0);
int n,m;db ans=1e10;
struct wy{db x,y;}t[MAXN];
inline int cmp(wy a,wy b){return a.x<b.x;}
inline db dis(wy a,wy b){return sqrt(pf(a.x-b.x)+pf(a.y-b.y));}
inline void around(db d)
{
d=d/180*Pi;
rep(1,n,i)
{
db x=t[i].x,y=t[i].y;
t[i].x=x*cos(d)-y*sin(d);
t[i].y=x*sin(d)+y*cos(d);
}
sort(t+1,t+1+n,cmp);
rep(1,n,i)
for(int j=i+1;j<=i+5&&j<=n;++j)
ans=min(ans,dis(t[i],t[j]));
}
int main()
{
freopen("1.in","r",stdin);
srand(time(0));
get(n);
rep(1,n,i){int get(x);t[i]=(wy){x,read()};}
around(0);around(rand()%360);printf("%.4lf",ans);
return 0;
}
P1429 平面最近点对[加强版] 随机化的更多相关文章
- Luogu P1429 平面最近点对(加强版)(分治)
P1429 平面最近点对(加强版) 题意 题目描述 给定平面上\(n\)个点,找出其中的一对点的距离,使得在这\(n\)个点的所有点对中,该距离为所有点对中最小的. 输入输出格式 输入格式: 第一行: ...
- P1429 平面最近点对(加强版)(分治)
P1429 平面最近点对(加强版) 主要思路: 分治,将点按横坐标为第1关键字升序排列,纵坐标为第2关键字升序排列,进入左半边和右半边进行分治. 设d为左右半边的最小点对值.然后以mid这个点为中心, ...
- p1429 平面最近点对(加强版)
传送门 分析 我们可以枚举每一个点算它的最近点 估价函数应该分为3种情况计算: 大于max,小于min,位于min和max之间 代码 #include<iostream> #include ...
- (洛谷 P1429 平面最近点对(加强版) || 洛谷 P1257 || Quoit Design HDU - 1007 ) && Raid POJ - 3714
这个讲的好: https://phoenixzhao.github.io/%E6%B1%82%E6%9C%80%E8%BF%91%E5%AF%B9%E7%9A%84%E4%B8%89%E7%A7%8D ...
- 洛谷 P1429 平面最近点对(加强版) (分治模板题)
题意:有\(n\)个点对,找到它们之间的最短距离. 题解:我们先对所有点对以\(x\)的大小进行排序,然后分治,每次左右二等分递归下去,当\(l+1=r\)的时候,我们计算一下距离直接返回给上一层,若 ...
- Luogu P1429 平面最近点对 【分治】By cellur925
题目传送门 题目大意:给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的.$n$<=100000. $Algorithm$ 最朴素的$n^2$枚举肯定 ...
- 「LuoguP1429」 平面最近点对(加强版)
题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的 输入输出格式 输入格式: 第一行:n:2≤n≤200000 接下来n行:每行两个实数:x y, ...
- [Luogu1429]平面最近点对(加强版)
题目大意: 平面最近点对. 思路: 分治. 首先将所有点排序 每次把当前区间分为两半,递归求解两个区间内部的情况,然后枚举区间两边的点. #include<cmath> #include& ...
- 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点
平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...
随机推荐
- 01.RabbitMQ简单使用
官网地址:https://www.rabbitmq.com/getstarted.html RabbitMQ 优点: 数据处理异步执行: 应用之间解耦: 流量削峰 1.docker 安装 Rabbit ...
- Vue 项目推荐,Github 过万 Star
电鸭社区-远程工作-自由职业-兼职外包-自由从这开始 嗨,我是 Martin,也叫老王.不少小伙伴,说自己是转行.自学,没有项目,今天推荐一个 Vue 实战项目 还记得 Martin 仿写过在线 Ma ...
- 手把手一起入门 RabbitMQ 的六大使用模式(Java 客户端)
原文地址:手把手一起入门 RabbitMQ 的六大使用模式(Java 客户端) 为什么使用 MQ? 在这里我就不多说了,无非就是削峰.解耦和异步.这里没有很多关于 MQ 的理论和概念,只想手把手带你一 ...
- PLSQL导入dmp文件完整步骤(附图)
导入dmp文件分为三大步:创建表空间.创建用户.导入dmp文件 一.创建表空间: 点击new,新建一个sql window 语句为: create tablespace "表空间名" ...
- 【初学】Spring源码笔记之零:阅读源码
笔记要求 了解Java语言 了解Spring Framework的基础 会使用Maven 关于本笔记 起因 本职数据分析,为公司内部人员开发数据处理系统,使用了Python/Django+Bootst ...
- 【XCTF】ics-05
信息: 题目来源:XCTF 4th-CyberEarth 标签:PHP.伪协议 题目描述:其他破坏者会利用工控云管理系统设备维护中心的后门入侵系统 解题过程 题目给了一个工控管理系统,并提示存在后门, ...
- Drf06 /drf总结
Drf06 /drf总结 目录 Drf06 /drf总结 1. restful规范 2. drf组件认证的实现过程? 3. drf组件中权限的实现过程? 4. drf组件中节流的实现方式? 5. 什么 ...
- python之爬虫(八)BeautifulSoup库的使用
上一篇文章的正则,其实对很多人来说用起来是不方便的,加上需要记很多规则,所以用起来不是特别熟练,而这节我们提到的beautifulsoup就是一个非常强大的工具,爬虫利器. beautifulSoup ...
- 数据清洗与准备知识图谱-《利用Python进行数据分析》
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片.
- [Android] keytools生成jsk文件以及获取sha1码
生成jks文件 进入要生的jks文件的路径,打开windows的命令提示符(CMD) keytool -genkey -alias dct -keyalg RSA -keysize 1024 -key ...