LINK:城市规划

以前ls 让写的时候由于看不懂题目+以为在图中的环上dp非常困难所以放弃治疗了。

现在终于能把题目看懂了 泪目...

题目其实就是在说 给出一张图这个有一个非常好的性质 满足每个点都最多存在于一个无向边组成的环中。

这种图可以称之为仙人掌 但是比仙人掌的性质还要好 不仅只满足每条边最多在一个环中 每个点也在一个环中。

题目是想让在图中占领一些点 使得其周围的点都不能再被占领 且这些点的相邻点也不能被占领。

比独立集的要求要严格一点。每个点都有权值 求使得占领点的权值和最大值。

还是考虑dp.

f[i][j]表示以i这个点0自己没被占领儿子也没被占领 1表示自己被占领了 2表示儿子被占领的最大值.

考虑在环上的时候发现和其他环外部的点没有任何影响 所以直接在换上dp即可。

考虑 如果是仙人掌上呢 可以发现和这种图情况一模一样 不过把一个点下方吊的环变成了点罢了。

所以可以发现这种dp适用于 仙人掌图 而不仅限于题中给的条件。

没想到这道题还挺奇葩 转移没有想象中那么简单。

考虑f[x][2]的转移 发现只能有一个儿子占 且这个儿子在转移的时候还可以轮换。

这在环上dp的时候是要分类讨论一大堆的。

但是 题解区给出了一个非常简明的分类讨论。

设calc(l,r)表示l和r都不选的最大值 这个东西也很好做 然后依靠这个东西我们可以很简便的分类讨论出来很多东西。

这里我强行使用了题目中的性质 这个代码并不适用于仙人掌图 如果想的话可以加以修改得以适应。

const int MAXN=1000010;
int n,m,top,len,cnt,sum,ans;
int f[MAXN][3],g[MAXN][3],v[MAXN];
int a[MAXN],dfn[MAXN],b[MAXN],s[MAXN],low[MAXN],w[MAXN];
int lin[MAXN],ver[MAXN<<2],nex[MAXN<<2];
inline void add(int x,int y)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
}
inline int calc(int l,int r)//l 和 r 不能选的最大值.
{
if(l>r)return 0;
g[l-1][0]=-INF;g[l-1][1]=g[l-1][2]=0;
rep(l,r,i)
{
g[i][0]=max(g[i-1][0],g[i-1][2])+f[b[i]][0];
g[i][1]=f[b[i]][1]+g[i-1][0];
g[i][2]=max(f[b[i]][0]+g[i-1][1],f[b[i]][2]+max(g[i-1][0],g[i-1][2]));
}
return max(g[r][0],g[r][2]);
}
inline void solve(int x)//处理环
{
f[x][2]=max(f[x][2]+calc(2,sum),f[x][0]+f[b[2]][1]+f[b[3]][0]+calc(4,sum));
f[x][2]=max(f[x][2],f[x][0]+f[b[sum]][1]+f[b[sum-1]][0]+calc(2,sum-2));
f[x][1]=f[x][1]+f[b[2]][0]+f[b[sum]][0]+calc(3,sum-1);//calc(3,sum-1);
f[x][0]+=calc(2,sum);
}
inline void dfs(int x,int fa)
{
dfn[x]=low[x]=++cnt;v[x]=fa;
s[++top]=x;f[x][1]=a[x];
int ww=0,cc=0;
go(x)
{
if(!dfn[tn])
{
dfs(tn,x);
low[x]=min(low[x],low[tn]);
if(low[tn]==dfn[x])cc=tn;
if(low[tn]>dfn[x])
{
f[x][0]+=max(f[tn][0],f[tn][2]);
f[x][1]+=f[tn][0];
ww=max(ww,f[tn][1]-max(f[tn][0],f[tn][2]));
}
}else if(v[x]!=tn)low[x]=min(low[x],dfn[tn]);
}
f[x][2]=f[x][0]+ww;
if(cc)
{
int y=0;sum=0;
b[++sum]=x;
while(y!=cc)
{
y=s[top--];
b[++sum]=y;
}
solve(x);
}
if(low[x]>dfn[v[x]])--top;
}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);
rep(1,n,i)get(a[i]);
rep(1,m,i){int get(x);int get(y);add(x,y);add(y,x);}
rep(1,n,i)if(!dfn[i])dfs(i,0),ans+=max(f[i][0],max(f[i][1],f[i][2]));
put(ans);return 0;
}

环上分类讨论dp好题~!

luogu 2478 [SDOI2010]城市规划 仙人掌上dp.的更多相关文章

  1. BZOJ.1023.[SHOI2008]cactus仙人掌图(DP)

    题目链接 类似求树的直径,可以用(类似)树形DP求每个点其子树(在仙人掌上就是诱导子图)最长链.次长链,用每个点子节点不同子树的 max{最长链}+max{次长链} 更新答案.(不需要存次长链,求解过 ...

  2. bzoj 1023: [SHOI2008]cactus仙人掌图 2125: 最短路 4728: 挪威的森林 静态仙人掌上路径长度的维护系列

    %%% http://immortalco.blog.uoj.ac/blog/1955 一个通用的写法是建树,对每个环建一个新点,去掉环上的边,原先环上每个点到新点连边,边权为点到环根的最短/长路长度 ...

  3. Luogu 2469 [SDOI2010]星际竞速 / HYSBZ 1927 [Sdoi2010]星际竞速 (网络流,最小费用流)

    Luogu 2469 [SDOI2010]星际竞速 / HYSBZ 1927 [Sdoi2010]星际竞速 (网络流,最小费用流) Description 10年一度的银河系赛车大赛又要开始了.作为全 ...

  4. [正经分析] DAG上dp两种做法的区别——拓扑序与SPFA

    在下最近刷了几道DAG图上dp的题目. 要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点. 第二道是洛谷上的NOI导刊题目<最长路 ...

  5. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  6. DAG上dp思想

    DAG上DP的思想 在下最近刷了几道DAG图上dp的题目.要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点.第二道是洛谷上的NOI导刊题 ...

  7. zoj1232Adventure of Super Mario(图上dp)

    题目连接: 啊哈哈.点我点我 思路: 这个题目是一个图上dp问题.先floyd预处理出图上全部点的最短路,可是在floyd的时候,把可以用神器的地方预处理出来,也就是转折点地方不能为城堡..预处理完成 ...

  8. 从《彩色圆环》一题探讨一类环上dp的解法

    清橙A1202 bzoj2201 bsoj4074 试题来源 2010中国国家集训队命题答辩 问题描述 小A喜欢收集宝物.一天他得到了一个圆环,圆环上有N颗彩色宝石,闪闪发光.小A很爱惜这个圆环,天天 ...

  9. BZOJ 1023: [SHOI2008]cactus仙人掌图 | 在仙人掌上跑DP

    题目: 求仙人掌直径 http://www.lydsy.com/JudgeOnline/problem.php?id=1023 题解: 首先给出仙人掌的定义:满足所有的边至多在一个环上的无向联通图 我 ...

随机推荐

  1. CountDownLatch 线程工具类

    CountDownLatch:概念是,允许一个或多个线程等待其他线程完成操作: 在线程基础知识中,学习过线程的join方法,当前线程阻塞等待join线程执行完毕才能执行: 测试代码如下: public ...

  2. MVC中model、dao、view、controlller、service之间的关系

    Model:是事物的模型,如Person.java,定义人的属性行为.pojo,OR maping,持久层 Dao:是持久化操作代码编写处,与数据库对接,如对Person进行增删改查. Service ...

  3. TJOI2018 数学计算 题解

    题目 小豆现在有一个数 \(x\) ,初始值为 \(1\) . 小豆有 \(Q\) 次操作,操作有两种类型: \(m\): \(x=x×m\),输出 \(x\mod M\) : \(pos\): \( ...

  4. web 部署专题(六):nginx 安装(二) linux

    https://www.cnblogs.com/quzq/p/12131696.html 基础篇 一.环境 服务器版本:CentOS 7.2 为了保证学习阶段不遇到奇怪的事情,请保证以下四点(大神选择 ...

  5. Spring用到了那些注解?

    一:@Autowired(按类型注入)1.1通过 @Autowired的使用来消除 set ,get方法.@Autowiredprivate Dao dao;这样就可以删除set ,get方法和spr ...

  6. 用前端姿势玩docker【四】基于docker快速构建webpack的开发与生产环境

    目录 用前端姿势玩docker[一]Docker通俗理解常用功能汇总与操作埋坑 用前端姿势玩docker[二]dockerfile定制镜像初体验 用前端姿势玩docker[三]基于nvm的前端环境构建 ...

  7. Ubuntu18.04安装Docker并部署(编译、发布、构建镜像)Asp.NetCore项目全过程笔记

      环境准备:阿里云Ubuntu18.04 全新安装   一.安装Docker 1.删除旧版本并更新包索引: sudo apt-get remove docker docker-engine dock ...

  8. Eclipse点击空格总是自动补全代码怎么办,如何自动补全代码,代码提示

    Eclipse点击空格总是自动补全不想要的代码说明大家配置的时候出现了一点错误,下面的步骤将会解决它, 网上部分经验需要大家更改代码非常繁琐,下面是一个简单的步骤方法 步骤一:打开eclipse依次点 ...

  9. RabbitMQ 入门之基础概念

    什么是消息队列(MQ) 消息是在不同应用间传递的数据.这里的消息可以非常简单,比如只包含字符串,也可以非常复杂,包含多个嵌套的对象.消息队列(Message Queue)简单来说就是一种应用程序间的通 ...

  10. 题解 洛谷 P4492 【[HAOI2018]苹果树】

    考虑生成一颗二叉树的过程,加入第一个节点方案数为\(1\),加入第二个节点方案数为\(2\),加入第三个节点方案数为\(3\),发现生成一颗\(n\)个节点的二叉树的方案数为\(n!\). 所以题目中 ...