PAT l2-018 多项式A除以多项式B 【多项式+模拟】
这仍然是一道关于A/B的题,只不过A和B都换成了多项式。你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数。
输入格式:
输入分两行,每行给出一个非零多项式,先给出A,再给出B。每行的格式如下:
N e[1] c[1] ... e[N] c[N]
其中N是该多项式非零项的个数,e[i]是第i个非零项的指数,c[i] 是第i个非零项的系数。各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系数是非零整数,所有整数在整型范围内。
输出格式:
分两行先后输出商和余,输出格式与输入格式相同,输出的系数保留小数点后1位。同行数字间以1个空格分隔,行首尾不得有多余空格。注意:零多项式是一个特殊多项式,对应输出为“0 0 0.0”。但非零多项式不能输出零系数(包括舍入后为0.0)的项。在样例中,余多项式其实有常数项“-1/27”,但因其舍入后为0.0,故不输出。
输入样例:
4 4 1 2 -3 1 -1 0 -1
3 2 3 1 -2 0 1
输出样例:
3 2 0.3 1 0.2 0 -1.0
1 1 -3.1
多项式除法讲解视频:戳这里
本题参考博客:戳这里
这题的难点在于每次除法都要更新被除数的值,所以被除多项式用map记录,将会简单很多。
PAT l2-018 多项式A除以多项式B 【多项式+模拟】的更多相关文章
- 多项式A除以B
这个问题我是在PAT大区赛题里遇见的.题目如下: 多项式A除以B(25 分) 这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数 ...
- L2-018. 多项式A除以B*
L2-018. 多项式A除以B 参考博客 #include <iostream> #include <map> #include <cmath> #include ...
- (转载) 天梯赛 L2-018. 多项式A除以B
题目链接 题目描述 这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出一个非零多项式,先给出 ...
- 7-10 多项式A除以B (25分)(多项式除法)
7-10 多项式A除以B (25分) 这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出 ...
- PAT L2-018. 多项式A除以B
暴力,模拟. 比赛搞了一个小时搞到了$1$分.赛场上不够冷静......之前没接触过多项式除法,但赛场上想到了除法的规则,莫名其妙写的时候不知道哪里崩了.对于这样的题目,应该先测一测数据的指数是不是很 ...
- 团体程序设计天梯赛 L2-018. 多项式A除以B(模拟)
题意:给你A,B两个多项式,问你A/B的值:注意多项式给你的是每个式子的指数与系数:保留到一位小数,如果出现系数为0(保留后也是)的情况,请不要输出它,如果没有非系数为0的情况就输出特殊 题解:多项式 ...
- L2-018 多项式A除以B(模拟)
这仍然是一道关于A/B的题,只不过A和B都换成了多项式.你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数. 输入格式: 输入分两行,每行给出一个非零多项式,先给出A,再给出B.每行的 ...
- 7-10 多项式A除以B (25 分)
题目链接:https://pintia.cn/problem-sets/1108548596745592832/problems/1108548661014913033 题目大意: 这仍然是一道关于A ...
- pta l2-18(多项式A除以B)
题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805060372905984 题意:给定两个多项式,求出其做除法 ...
随机推荐
- 创建并使用https证书
目录 前言 产生证书 测试https服务器 用tls加密tcp连接 总结 前言 https要比http更安全些,因此可以配置Nginx服务器使用证书,客户端就会去第三方平台校验证书. 但是我们自己的服 ...
- openshift 3.11安装部署
openshift 3.11 安装部署 openshift安装部署 1 环境准备(所有节点) openshift 版本 v3.11 1.1 机器环境 ip cpu mem hostname OSsys ...
- Mac中安装Git
Mac 安装git 打开Mac终端输入git命令 如果出现以下代码说明已经安装 usage: git [--version] [--help] [-C <path>] [-c <na ...
- Python语言程序设计---函数的定义与使用
推荐一个Python学习交流的q群:610380249 在学习Python的过程中,有什么不懂的问题都可以发群里,一起讨论. 1 函数的理解和定义 函数是一段代码的表示,所指定的参数是一种占位符,如果 ...
- 我教你如何解决 Docker 下载 mcr.microsoft.com 镜像慢的办法
我教你如何解决 Docker 下载 mcr.microsoft.com 镜像慢的办法 一.介绍 最近,我在写有关使用 Jenkins 搭建企业级持续集成环境的文章,准备了四台服务器,企业级别嘛,一台就 ...
- 进程通信类型 管道是Linux支持的最初Unix IPC形式之一 命名管道 匿名管道
管道 Linux环境进程间通信(一) https://www.ibm.com/developerworks/cn/linux/l-ipc/part1/index.html 管道及有名管道 郑彦兴200 ...
- setTimeout、Promise、Async/Await 的区别
事件循环中分为宏任务队列和微任务队列其中setTimeout的回调函数放到宏任务队列里,等到执行栈清空以后执行promise.then里的回调函数会放到相应宏任务的微任务队列里,等宏任务里面的同步代码 ...
- 时间模块,os模块,sys模块
时间模块 和时间有关系的我们就要用到时间模块.在使用模块之前,应该首先导入这个模块. #常用方法 1.time.sleep(secs) (线程)推迟指定的时间运行.单位为秒. 2.time.time( ...
- 算法总结篇---字典树(Trie)
目录 写在前面 具体实现 引例: 引例代码: 例题 Phone List Solution: The XOR Largest Pair Solution L语言 Solution: 写在前面 字典树是 ...
- LOJ10097和平委员会
POI 2001 根据宪法,Byteland民主共和国的公众和平委员会应该在国会中通过立法程序来创立. 不幸的是,由于某些党派代表之间的不和睦而使得这件事存在障碍. 此委员会必须满足下列条件: 每个党 ...