晚上做到的一个扩欧的水题(?)

wa了好几发感觉自己药丸…重新推了一遍公式才发现自己打错了orz

借此复习一下扩欧吧…orz

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1407


看到这里的人应该都知道扩欧是干嘛的吧…如果不知道也没关系下面有…

欧几里得辗转相除:$gcd(a,b)=gcd(b,a \mod b)$,证明可以看下面。

扩展欧几里得:

考虑方程$ax+by=gcd(a,b)$,如果$b=0$则直接有$x=1,y=0$,否则通过上面的式子可以得到$$ax+by=gcd(a,b)=gcd(b,a\mod b)=bx+(a\mod b)y=bx+(a-b*\lfloor \frac{b}{a} \rfloor)y$$然后根据$a,b$合并同类项:$$ax+by=ay+b*(x-\lfloor \frac{a}{b} \rfloor y)$$ 看,他出现了递归的形式!所以我们就可以递归的求了(返回的是$gcd(a,b)$):

inline int exgcd(int a,int b,int &x,int &y)
{
if(b==0){x=1;y=0;return a;}
int d=exgcd(b,a%b,x,y);
int tx,ty;tx=y;ty=x-a/b*y;
x=tx;y=ty;
return d;
}

好了刚刚说过下面要证明辗转相除法,假如我们通过辗转相除法求出了$d=gcd(a,b)=ax+by$,我们怀疑有一个更大的公约数$d'$因为某些原因没有被找到,但是这是不存在的~因为如果有这样的一个$d'$,作为$a,b$的$gcd$一定整除$ax+by$,一定整除$d$,所以一定$\leq d$。此外也容易验证求出来的$d$一定整除$a,b$,所以就是真的最大公约数啦~

可以证明复杂度是$O(log n)$的。

不过我们一般不是直接用上面的方程,实际上更多的是讨论$ax+by=c$这个不定方程的解。

把方程两边同除掉$gcd(a,b)$:$$\frac{a}{gcd(a,b)}x+\frac{b}{gcd(a,b)}y=\frac{c}{gcd(a,b)}$$ 这里的其他项都是整数,所以要有解的充要条件就是$gcd(a,b)|c$了。如果它有解的话就先求出$ax+by=gcd(a,b)$的一组解$(x_0,y_0)$,将解代到方程里之后再将两边都乘上$k=\frac{c}{gcd(a,b)}$就得到了$kax_0+kby_0=c$,从而原方程的一组特解就是$x=kx_0,y=ky_0$了。

如果我们要求出其他的解(通解)怎么办?也就是我们想要找一组最小的$\Delta x,\Delta y$使得$a(x+\Delta x)+b(y+\Delta y)=c$,结合$ax+by=c$我们可以得到$a \Delta x+b \Delta y =0$

哎呀这个要怎么弄呀,构造!令$d=gcd(a,b)$,根据$ab-ba=0$我们给他同除掉$d$就可以得到一个有用的等式:$a\frac{b}{d}-b\frac{a}{d}=0$,很显然$\Delta x=\frac{b}{gcd(a,b)},\Delta y=-\frac{a}{gcd(a,b)}$,而且这里的$\Delta x,\Delta y$一定是满足条件的最小值了,因为不能再除了。

好了现在回到我们的题目,$n$非常小,又保证了答案的范围,我们可以直接枚举答案$m$然后判断是否对于所有$i \not = j$都满足同余方程$c_i+x*p_i \equiv c_j+x*p_j \pmod m$无解或解比$min(l_i,l_j)$还小,这个方程可以直接转换成$x(p_i-p_j)-my = c_j-c_i$来做

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=17;
int n,m;
int c[N],p[N],l[N]; inline int gcd(int a,int b)
{
return !b?a:gcd(b,a%b);
}
inline int exgcd(int a,int b,int &x,int &y)
{
if(b==0){x=1;y=0;return a;}
int d=exgcd(b,a%b,x,y);
int tx,ty;tx=y;ty=x-a/b*y;
x=tx;y=ty;
return d;
}
inline bool check()
{
for(register int i=1;i<=n;i++)
{
for(register int j=i+1;j<=n;j++)
{
int ta,tb,tc,t,x,y;
ta=p[i]-p[j];tb=m;tc=c[j]-c[i];
t=gcd(ta,tb);
if(tc%t)continue;
ta/=t;tb/=t;tc/=t;exgcd(ta,tb,x,y);
tb=abs(tb);x=((x*tc)%tb+tb)%tb;if(!x)x+=tb;
if(x<=min(l[i],l[j]))return 0;
}
}
return 1;
}
int main()
{
scanf("%d",&n);
for(register int i=1;i<=n;i++)scanf("%d%d%d",&c[i],&p[i],&l[i]),m=max(m,c[i]);
while(1)
{
if(check())break;
m++;
}
printf("%d",m);
return 0;
}

[日常摸鱼]bzoj1470[noi2002]Savage的更多相关文章

  1. Hash 日常摸鱼笔记

    本篇文章是Hash在信息学竞赛中的应用的学习笔记,分多次更新(已经有很多坑了) 一维递推 首先是Rabin-Karp,对于一个长度为\(m\)的串\(S\) \(f(S)=\sum_{i=1}^{m} ...

  2. [日常摸鱼]HDU1724 Ellipse-自适应Simpson法

    模板题~ QAQ话说Simpson法的原理我还是不太懂-如果有懂的dalao麻烦告诉我~ 题意:每次给一个椭圆的标准方程,求夹在直线$x=l$和$x=r$之间的面积 Simpson法 (好像有时候也被 ...

  3. [日常摸鱼]bzoj1257余数之和

    题意:输入$k,n$,求$\sum_{i=1}^n k \mod i$ $k \mod i=k-i*\lfloor \frac{k}{i} \rfloor $,$n$个$k$直接求和,后面那个东西像比 ...

  4. [日常摸鱼]bzoj1001狼抓兔子-最大流最小割

    题意就是求最小割- 然后我们有这么一个定理(最大流-最小割定理 ): 任何一个网络图的最小割中边的容量之和等于图的最大流. (下面直接简称为最大流和最小割) 证明: 如果最大流>最小割,那把这些 ...

  5. [日常摸鱼]pojKaka's Matrix Travels-拆点+最大费最大流

    方格取数的升级版,每个格子最多取一次. $k=1$的话就是个普及组的dp题,$k=2$就是在之前的基础上多加两维. 然而现在$k$太大了当然就不dp啦 对于$k=1$的情况我们还可以把$(i,j)$向 ...

  6. [日常摸鱼]loj6000「网络流 24 题」搭配飞行员

    题面 应该是二分图匹配,不过我写的是网络最大流. dinic求二分图最大匹配:加个源点和汇点,源点连向二分图的一边所有点,二分图的另一边所有点连向汇点,很明显这样得到的最大流就是这个二分图的最大匹配. ...

  7. [日常摸鱼]poj1741Tree-点分治

    还有两天就要去FJWC啦- 题意:一颗无根树,$k$为给定常数,求树上距离不超过$k$的点对的数量,多组数据,$n \leq 10^4$. 应该是点分治经典题~ 一般对于无根树我们都可以把它转变成有根 ...

  8. [日常摸鱼]bzoj1218[HNOI2003]激光炸弹-二维前缀

    题意:二维网格一些格子有权值,求用边长为$r$的正方形能覆盖到格子权值和的最大值,格子大小$ \leq 5000$ 非常裸的二维前缀,然而 题目下标从0开始! QAQ 要是比赛就要爆零啦- #incl ...

  9. [日常摸鱼]bzoj2724蒲公英-分块

    区间众数经典题~ http://begin.lydsy.com/JudgeOnline/problem.php?id=4839这里可以提交~ 题意大概就是没有修改的询问区间众数,如果有一样的输出最小的 ...

随机推荐

  1. (buuctf) - pwn入门部分wp - rip -- pwn1_sctf_2016

    [buuctf]pwn入门 pwn学习之路引入 栈溢出引入 test_your_nc [题目链接] 注意到 Ubuntu 18, Linux系统 . nc 靶场 nc node3.buuoj.cn 2 ...

  2. Stream流的这些操作,你得知道,对你工作有很大帮助

    Stream流 Stream(流)是一个来自数据源的元素队列并支持聚合操作: 元素是特定类型的对象,形成一个队列. Java中的Stream并不会存储元素,而 是按需计算. 数据源 流的来源. 可以是 ...

  3. 有什么OCR文字识别软件好用?

    OCR文字识别是指:对文本资料进行扫描,然后对图像文件进行分析处理,最后获取文字以及版面信息的过程.对于许多学生党而言,一款好用的文字识别软件,能节省很多抄笔记的时间,而对于许多处理文字内容的白领而言 ...

  4. mq消息

    同步,异步,单向 Message的扩展属性主要包含下面几个: tag:消息tag,用于消息过滤 keys:Message索引键,用多个空格隔开,可以根据这些key快速检索到消息 waitStoreMs ...

  5. LaTeX文档的基本结构

    正文提纲的构建代码及注释: 显示效果: 目录结构与换行的代码及注释: 显示效果: 具体的有关的信息可以具体查看ctex文档,可以在导言区进行全局的设置,比如标题居中设置等.

  6. 02-Python里字符串的常用操作方法--split()函数和join()函数

    1.split() --分割,返回一个列表, 会丢失分割字符 实例: my_str = 'you and me and he' list01 = my_str.split('and') list02 ...

  7. C语言项目——工程化编程的案例分析

    一.VSCode安装及环境配置 初始在Win下安装Mingw-w64/GCC 和 GDB,在VSCode下打开项目案例,发现在linktable中需要包含pthread头文件.此文件是基于Linux系 ...

  8. [题解] [USACO05JAN]Muddy Fields G

    题目TP门 题目大意 在一个 \(R×C\) 的矩阵中,每个点有两个状态:草地和泥地.你需要在泥地里铺 \(1×k\) 木块, \(k\) 为任意整数,求最少要多少木块. 思路 两个横向木块不会互相干 ...

  9. 【常见踩坑】】USB调试安装失败(Installation failed with message INSTALL_CANCELED_BY_USER)

    [参考]http://www.cnblogs.com/liushilin/p/6553918.html 问题:在USB安装调试(小米手机),出现如下错误 解决:1.小米手机解决办法见参考.登录小米账号 ...

  10. 以前一个个文件删数据的我,今天终于找到了释放C盘空间的办法

    这是我刚刚清理的C盘,亲测有效!无需安装清理空间的软件,我的电脑品牌是华硕. win10的电脑应该都有搜索功能,如果没有开启,可以鼠标右键点击任务栏. 弹出菜单找到[搜索]-[显示搜索图标],勾选即可 ...