本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

  我们在使用pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。

  而在pandas中,针对不同的应用场景,我们可以使用resample()groupby()以及Grouper()来非常高效快捷地完成此类任务。

图1

2 在pandas中进行时间分组聚合

  在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现:

2.1 利用resample()对时序数据进行分组聚合

  resample原始的意思是重采样,可分为上采样下采样,而我们通常情况下使用的都是下采样,也就是从高频的数据中按照一定规则计算出更低频的数据,就像我们一开始说的对每日数据按月汇总那样。

  如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样,就像下面的例子那样:

import pandas as pd

# 记录了2013-02-08到2018-02-07之间每个交易日苹果公司的股价
AAPL = pd.read_csv('AAPL.csv', parse_dates=['date']) # 以月为统计窗口计算每月股票最高收盘价
(
AAPL
.set_index('date') # 设置date为index
.resample('M') # 以月为单位
.agg({
'close': ['max', 'min']
})
)

图2

  可以看到,在上面的例子中,我们对index为日期时间类型的DataFrame应用resample()方法,传入的参数'M'resample第一个位置上的参数rule,用于确定时间窗口的规则,譬如这里的字符串'M'就代表月且聚合结果中显示对应月的最后一天,常用的固化的时间窗口规则如下表所示:

规则 说明
W 星期
M 月,显示为当月最后一天
MS 月,显示为当月第一天
Q 季度,显示为当季最后一天
QS 季度,显示为当季第一天
A 年,显示为当年最后一天
AS 年,显示为当年第一天
D
H 小时T
T或min 分钟
S
L或 ms 毫秒

  且这些规则都可以在前面添加数字实现倍数效果:

# 以6个月为统计窗口计算每月股票平均收盘价且显示为当月第一天
(
AAPL
.set_index('date') # 设置date为index
.resample('6MS') # 以6个月为单位
.agg({
'close': 'mean'
})
)

图3

  且resample()非常贴心之处在于它会自动帮你对齐到规整的时间单位上,譬如我们这里只有交易日才会有记录,如果我们设置的时间单位下无对应记录,也会为你保留带有缺失值记录的时间点:

(
AAPL
.set_index('date') # 设置date为index
.resample('1D') # 以1日为单位
.agg({
'close': 'mean'
})
)

图4

  而通过参数closed我们可以为细粒度的时间单位设置区间闭合方式,譬如我们以2日为单位,将closed设置为'right'时,从第一行记录开始计算所落入的时间窗口时,其对应为时间窗口的右边界,从而影响后续所有时间单元的划分方式:

(
AAPL
.set_index('date') # 设置date为index
.resample('2D', closed='right')
.agg({
'close': 'mean'
})
)

图5

  而即使你的数据框index不是日期时间类型,也可以使用参数on来传入日期时间列名实现同样的效果。

2.2 利用groupby()+Grouper()实现混合分组

  有些情况下,我们不仅仅需要利用时间类型列来分组,也可能需要包含时间类型在内的多个列共同进行分组,这种情况下我们就可以使用到Grouper()

  它通过参数freq传入等价于resample()rule的参数,并利用参数key指定对应的时间类型列名称,但是可以帮助我们创建分组规则后传入groupby()中:

# 分别对苹果与微软每月平均收盘价进行统计
(
pd
.read_csv('AAPL&MSFT.csv', parse_dates=['date'])
.groupby(['Name', pd.Grouper(freq='MS', key='date')])
.agg({
'close': 'mean'
})
)

图6

  且在此种混合分组模式下,我们可以非常方便的配合applytransform等操作,这里就不再赘述。


  以上就是本文的全部内容,欢迎在评论区与我进行讨论~

(数据科学学习手札99)掌握pandas中的时序数据分组运算的更多相关文章

  1. (数据科学学习手札131)pandas中的常用字符串处理方法总结

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在日常开展数据分析的过程中,我们经常需要对 ...

  2. (数据科学学习手札52)pandas中的ExcelWriter和ExcelFile

    一.简介 pandas中的ExcelFile()和ExcelWriter(),是pandas中对excel表格文件进行读写相关操作非常方便快捷的类,尤其是在对含有多个sheet的excel文件进行操控 ...

  3. (数据科学学习手札68)pandas中的categorical类型及应用

    一.简介 categorical是pandas中对应分类变量的一种数据类型,与R中的因子型变量比较相似,例如性别.血型等等用于表征类别的变量都可以用其来表示,本文就将针对categorical的相关内 ...

  4. (数据科学学习手札49)Scala中的模式匹配

    一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...

  5. (数据科学学习手札32)Python中re模块的详细介绍

    一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供 ...

  6. (数据科学学习手札19)R中基本统计分析技巧总结

    在获取数据,并且完成数据的清洗之后,首要的事就是对整个数据集进行探索性的研究,这个过程中会利用到各种描述性统计量和推断性统计量来初探变量间和变量内部的基本关系,本篇笔者便基于R,对一些常用的数据探索方 ...

  7. (数据科学学习手札124)pandas 1.3版本主要更新内容一览

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 就在几天前,pandas发布了其1.3版本 ...

  8. (数据科学学习手札126)Python中JSON结构数据的高效增删改操作

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一期文章中我们一起学习了在Python ...

  9. (数据科学学习手札81)conda+jupyter玩转数据科学环境搭建

    本文示例yaml文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在使用Python进行数据分析时,很 ...

随机推荐

  1. Spider_实践_beautifulsoup静态网页爬取所有网页链接

    # 获取百度网站首页上的所有a标签里的 href属性值: # import requests # from bs4 import BeautifulSoup # # html = requests.g ...

  2. 案例:简易的Div拖拽

    案例:简易的Div拖拽 鼠标移入Div区域后,按下鼠标左键,可以拖动Div移动;松开鼠标左键,Div拖动停止.同时要求Div不能拖出屏幕显示区域外. 拖拽原理:距离不变.三个事件(onmousedow ...

  3. [读书笔记] Python语言及其应用

    记录下秋招期间看的一本Python工具书<Python语言与其应用>,查漏补缺,部分内容整理如下: 易混淆概念 1.1 删除 - del,remove()和pop() 1.2 复制 - 浅 ...

  4. 四、c++总结------linux多线程服务端编程

  5. 二、多线程及服务器编程总结------linux多线程服务端编程

  6. [LeetCode题解]109. 有序链表转换二叉搜索树 | 快慢指针 + 递归

    题目描述 给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定的有序链表: ...

  7. 统计数字问题(Java)

    Description 一本书的页码从自然数1 开始顺序编码直到自然数n.书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0.例如,第6 页用数字6 表示,而不是06 或006 等.数字计数问 ...

  8. LeetCode 中等题解(2)

    31 下一个排列 Question 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须 ...

  9. 循序渐进VUE+Element 前端应用开发(27)--- 数据表的动态表单设计和数据存储

    在我们一些系统里面,有时候会需要一些让用户自定义的数据信息,一般这些可以使用扩展JSON进行存储,不过每个业务表的显示项目可能不一样,因此需要根据不同的表单进行设计,然后进行对应的数据存储.本篇随笔结 ...

  10. docker漏洞复现环境搭建

    0x00 docker简介 把原来的笔记整理了一下,结合前几天的一个漏洞,整理一篇简单的操作文档,希望能帮助有缘人. docker是一个开源的应用容器引擎,开发者可以打包自己的应用到容器里面,然后迁移 ...