codeforces #345 (Div. 1) D. Zip-line (线段树+最长上升子序列)
Vasya has decided to build a zip-line on trees of a nearby forest. He wants the line to be as long as possible but he doesn't remember exactly the heights of all trees in the forest. He is sure that he remembers correct heights of all trees except, possibly,
one of them.
It is known that the forest consists of n trees staying in a row numbered from left to right with integers from 1 to n.
According to Vasya, the height of the i-th tree is equal to hi.
The zip-line of length k should hang over k (1 ≤ k ≤ n)
trees i1, i2, ..., ik (i1 < i2 < ... < ik)
such that their heights form an increasing sequence, that is hi1 < hi2 < ... < hik.
Petya had been in this forest together with Vasya, and he now has q assumptions about the mistake in Vasya's sequence h.
His i-th assumption consists of two integers ai and bi indicating
that, according to Petya, the height of the tree numbered ai is
actually equal to bi.
Note that Petya's assumptions are independent from each other.
Your task is to find the maximum length of a zip-line that can be built over the trees under each of the q assumptions.
In this problem the length of a zip line is considered equal to the number of trees that form this zip-line.
The first line of the input contains two integers n and m (1 ≤ n, m ≤ 400 000) —
the number of the trees in the forest and the number of Petya's assumptions, respectively.
The following line contains n integers hi (1 ≤ hi ≤ 109) —
the heights of trees according to Vasya.
Each of the following m lines contains two integers ai and bi (1 ≤ ai ≤ n, 1 ≤ bi ≤ 109).
For each of the Petya's assumptions output one integer, indicating the maximum length of a zip-line that can be built under this assumption.
4 4
1 2 3 4
1 1
1 4
4 3
4 5
4
3
3
4
4 2
1 3 2 6
3 5
2 4
4
3
Consider the first sample. The first assumption actually coincides with the height remembered by Vasya. In the second assumption the heights of the trees are (4, 2, 3, 4),
in the third one they are (1, 2, 3, 3) and in the fourth one they are (1, 2, 3, 5).
题意:给你n个数,有q个询问,每一次替换c上的位置为d,问替换后的最长严格上升子序列的长度是多少。
思路:如果普通的替换再查找肯定超时了,所以我们要用线段树来处理。我们设f[i],g[i]分别为以i位置为尾点和起始点的最长严格上升子序列的长度,这个可以用线段树O(nlogn)的复杂度求出来,记录最长上升子序列的长度为maxlen,然后我们再设f1[i],f2[i]表示询问i替换后,询问替换的位置为c,以c位置为尾点和起始点的最长上升子序列长度。接下来我们要判断替换的节点是不是"关键点","关键点"的意思是,如果原来序列没有这个位置的点,那么原来序列的最长上升子序列的长度达不到maxlen。那么这个要怎么判断呢,我们可以开一个数组cnt[i],表示对于一个节点j,以j为尾节点的最长上升子序列的长度为i,且f[j]+g[j]-1==maxlen的这样符合条件的j点的个数总和。对于每一个位置,先判断f[i]+g[i]-1是不是等于maxlen,如果等于maxlen,那么我们就把cnt[f[i]]++。然后对于每一个询问,ans=max(是不是为关键点?maxlen:maxlen-1
,f1[i]+g1[i]-1 )。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 400050
vector<pair<int,int> >ques[maxn]; //<idx,num>
int ans[maxn],a[maxn],pos[2*maxn];
int f1[maxn],g1[maxn],f[maxn],g[maxn];
int cnt[maxn];
int c[maxn],d[maxn];
struct node1{
struct node{
int l,r,maxlen;
}b[8*maxn];
void build(int l,int r,int th)
{
int mid;
b[th].l=l;b[th].r=r;
b[th].maxlen=0;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,th*2);
build(mid+1,r,th*2+1);
}
int question(int l,int r,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
return b[th].maxlen;
}
mid=(b[th].l+b[th].r)/2;
if(r<=mid)return question(l,r,th*2);
else if(l>mid)return question(l,r,th*2+1);
return max(question(l,mid,th*2),question(mid+1,r,th*2+1) );
}
void update(int idx,int num,int th)
{
int mid;
if(b[th].l==idx && b[th].r==idx){
b[th].maxlen=num;return;
}
mid=(b[th].l+b[th].r)/2;
if(idx<=mid)update(idx,num,th*2);
else update(idx,num,th*2+1);
b[th].maxlen=max(b[th*2].maxlen,b[th*2+1].maxlen);
}
}L,R;
int main()
{
int n,m,i,j,tot;
while(scanf("%d%d",&n,&m)!=EOF)
{
int tot=0;
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
tot++;pos[tot]=a[i];
}
for(i=1;i<=m;i++){
scanf("%d%d",&c[i],&d[i]);
ques[c[i] ].push_back(make_pair(i,d[i] ) );
tot++;pos[tot]=d[i];
}
sort(pos+1,pos+1+tot);
tot=unique(pos+1,pos+1+tot)-pos-1;
L.build(1,tot,1);
R.build(1,tot,1);
int maxlen,num,t;
maxlen=0;
for(i=1;i<=n;i++){
for(j=0;j<ques[i].size();j++){
t=lower_bound(pos+1,pos+1+tot,ques[i][j].second)-pos;
if(t==1)num=1;
else num=L.question(1,t-1,1)+1;
f1[ques[i][j].first ]=num;
}
t=lower_bound(pos+1,pos+1+tot,a[i])-pos;
if(t==1)f[i]=1;
else f[i]=L.question(1,t-1,1)+1;
L.update(t,f[i],1);
maxlen=max(maxlen,f[i]);
}
for(i=n;i>=1;i--){
for(j=0;j<ques[i].size();j++){
t=lower_bound(pos+1,pos+1+tot,ques[i][j].second)-pos;
if(t==tot)num=1;
else num=R.question(t+1,tot,1)+1;
g1[ques[i][j].first ]=num;
}
t=lower_bound(pos+1,pos+1+tot,a[i])-pos;
if(t==tot)g[i]=1;
else g[i]=R.question(t+1,tot,1)+1;
R.update(t,g[i],1);
}
for(i=1;i<=n;i++){
cnt[i]=0;
}
for(i=1;i<=n;i++){
if(f[i]+g[i]-1==maxlen){
cnt[f[i] ]++;
}
}
int ans;
for(i=1;i<=m;i++){
if(f[c[i] ]+g[c[i] ]-1==maxlen && cnt[f[c[i] ] ]==1 ){
ans=maxlen-1;
}
else ans=maxlen;
ans=max(f1[i]+g1[i]-1,ans );
printf("%d\n",ans);
}
}
return 0;
}
/*
15 14
76 9 32 82 40 91 46 5 12 69 44 97 30 13 29
4 73
13 84
14 51
5 99
7 47
14 32
4 12
11 20
9 65
15 95
10 26
5 25
2 62
11 81
*/
codeforces #345 (Div. 1) D. Zip-line (线段树+最长上升子序列)的更多相关文章
- Codeforces #345 Div.1
Codeforces #345 Div.1 打CF有助于提高做题的正确率. Watchmen 题目描述:求欧拉距离等于曼哈顿距离的点对个数. solution 签到题,其实就是求有多少对点在同一行或同 ...
- Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq
B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...
- Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) F. Souvenirs 线段树套set
F. Souvenirs 题目连接: http://codeforces.com/contest/765/problem/F Description Artsem is on vacation and ...
- Codeforces Round #603 (Div. 2) E. Editor(线段树)
链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...
- Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并
D. Developing Game Pavel is going to make a game of his dream. However, he knows that he can't mak ...
- Codeforces Round #530 (Div. 2) F (树形dp+线段树)
F. Cookies 链接:http://codeforces.com/contest/1099/problem/F 题意: 给你一棵树,树上有n个节点,每个节点上有ai块饼干,在这个节点上的每块饼干 ...
- Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- Codeforces Round #305 (Div. 2) D题 (线段树+RMQ)
D. Mike and Feet time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
随机推荐
- 【剑指 Offer】09.用两个栈实现队列
题目描述 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead , 分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,del ...
- MBAir下安装httprunner2.5.7 har2case 出现zsh: command not found解决方案
MBAir下python3.8安装httprunner2.5.7 出现zsh: command not found find / -name hrun查找到路径为: /Users/w550856/Li ...
- Java并发/多线程-CAS原理分析
目录 什么是CAS 并发安全问题 举一个典型的例子i++ 如何解决? 底层原理 CAS需要注意的问题 使用限制 ABA 问题 概念 解决方案 高竞争下的开销问题 什么是CAS CAS 即 compar ...
- 【RAC】oracle11g r2 rac环境删除节点步骤
1.移除数据库实例 如果节点运行了service首先需要删除service使用dbca图形化界面删除节点依次选择 Real Application Clusters -- > Instance ...
- 【RAC】11gRAC 搭建(VMware+裸设备)
安装环境与网络规划 安装环境 主机操作系统:windows 7虚拟机VMware12:两台Oracle Linux R6 U5 x86_64 Oracle Database software: Ora ...
- 【RAC】安装cluster软件 在节点2执行root.sh脚本
安装cluster软件 在节点2执行root.sh脚本 报错如下: Running vipca(silent) for configuring nodeapps /db/oracle/product ...
- centos下解压rar文件,Linux解压tar.gz和tar.bz2的命令
1.下载:根据主机系统下载合适的版本,当前64为centos系统演示下载: wget http://www.rarlab.com/rar/rarlinux-x64-5.3.0.tar.gz 2.解压安 ...
- try-catch-finally中的4个大坑,不小心就栽进去了!
在 Java 语言中 try-catch-finally 看似简单,一副人畜无害的样子,但想要真正的"掌控"它,却并不是一件容易的事.别的不说,咱就拿 fianlly 来说吧,别看 ...
- 分别简述computed和watch的使用场景
computed: 当一个属性受多个属性影响的时候就需要用到computed 最典型的栗子: 购物车商品结算的时候watch: 当一条数据影响多条数据的时候就需要用watch 栗子:搜索数据
- C # 9.0的record
官方消息: c # 9.0已经过时了!早在五月份,我就在博客中介绍了 c # 9.0计划,下面是该文章的更新版本,以便与我们最终发布的计划相匹配. 对于每一个新的 c # 版本,我们都在努力提高常见编 ...