codeforces #345 (Div. 1) D. Zip-line (线段树+最长上升子序列)
Vasya has decided to build a zip-line on trees of a nearby forest. He wants the line to be as long as possible but he doesn't remember exactly the heights of all trees in the forest. He is sure that he remembers correct heights of all trees except, possibly,
one of them.
It is known that the forest consists of n trees staying in a row numbered from left to right with integers from 1 to n.
According to Vasya, the height of the i-th tree is equal to hi.
The zip-line of length k should hang over k (1 ≤ k ≤ n)
trees i1, i2, ..., ik (i1 < i2 < ... < ik)
such that their heights form an increasing sequence, that is hi1 < hi2 < ... < hik.
Petya had been in this forest together with Vasya, and he now has q assumptions about the mistake in Vasya's sequence h.
His i-th assumption consists of two integers ai and bi indicating
that, according to Petya, the height of the tree numbered ai is
actually equal to bi.
Note that Petya's assumptions are independent from each other.
Your task is to find the maximum length of a zip-line that can be built over the trees under each of the q assumptions.
In this problem the length of a zip line is considered equal to the number of trees that form this zip-line.
The first line of the input contains two integers n and m (1 ≤ n, m ≤ 400 000) —
the number of the trees in the forest and the number of Petya's assumptions, respectively.
The following line contains n integers hi (1 ≤ hi ≤ 109) —
the heights of trees according to Vasya.
Each of the following m lines contains two integers ai and bi (1 ≤ ai ≤ n, 1 ≤ bi ≤ 109).
For each of the Petya's assumptions output one integer, indicating the maximum length of a zip-line that can be built under this assumption.
4 4
1 2 3 4
1 1
1 4
4 3
4 5
4
3
3
4
4 2
1 3 2 6
3 5
2 4
4
3
Consider the first sample. The first assumption actually coincides with the height remembered by Vasya. In the second assumption the heights of the trees are (4, 2, 3, 4),
in the third one they are (1, 2, 3, 3) and in the fourth one they are (1, 2, 3, 5).
题意:给你n个数,有q个询问,每一次替换c上的位置为d,问替换后的最长严格上升子序列的长度是多少。
思路:如果普通的替换再查找肯定超时了,所以我们要用线段树来处理。我们设f[i],g[i]分别为以i位置为尾点和起始点的最长严格上升子序列的长度,这个可以用线段树O(nlogn)的复杂度求出来,记录最长上升子序列的长度为maxlen,然后我们再设f1[i],f2[i]表示询问i替换后,询问替换的位置为c,以c位置为尾点和起始点的最长上升子序列长度。接下来我们要判断替换的节点是不是"关键点","关键点"的意思是,如果原来序列没有这个位置的点,那么原来序列的最长上升子序列的长度达不到maxlen。那么这个要怎么判断呢,我们可以开一个数组cnt[i],表示对于一个节点j,以j为尾节点的最长上升子序列的长度为i,且f[j]+g[j]-1==maxlen的这样符合条件的j点的个数总和。对于每一个位置,先判断f[i]+g[i]-1是不是等于maxlen,如果等于maxlen,那么我们就把cnt[f[i]]++。然后对于每一个询问,ans=max(是不是为关键点?maxlen:maxlen-1
,f1[i]+g1[i]-1 )。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 400050
vector<pair<int,int> >ques[maxn]; //<idx,num>
int ans[maxn],a[maxn],pos[2*maxn];
int f1[maxn],g1[maxn],f[maxn],g[maxn];
int cnt[maxn];
int c[maxn],d[maxn];
struct node1{
struct node{
int l,r,maxlen;
}b[8*maxn];
void build(int l,int r,int th)
{
int mid;
b[th].l=l;b[th].r=r;
b[th].maxlen=0;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,th*2);
build(mid+1,r,th*2+1);
}
int question(int l,int r,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
return b[th].maxlen;
}
mid=(b[th].l+b[th].r)/2;
if(r<=mid)return question(l,r,th*2);
else if(l>mid)return question(l,r,th*2+1);
return max(question(l,mid,th*2),question(mid+1,r,th*2+1) );
}
void update(int idx,int num,int th)
{
int mid;
if(b[th].l==idx && b[th].r==idx){
b[th].maxlen=num;return;
}
mid=(b[th].l+b[th].r)/2;
if(idx<=mid)update(idx,num,th*2);
else update(idx,num,th*2+1);
b[th].maxlen=max(b[th*2].maxlen,b[th*2+1].maxlen);
}
}L,R;
int main()
{
int n,m,i,j,tot;
while(scanf("%d%d",&n,&m)!=EOF)
{
int tot=0;
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
tot++;pos[tot]=a[i];
}
for(i=1;i<=m;i++){
scanf("%d%d",&c[i],&d[i]);
ques[c[i] ].push_back(make_pair(i,d[i] ) );
tot++;pos[tot]=d[i];
}
sort(pos+1,pos+1+tot);
tot=unique(pos+1,pos+1+tot)-pos-1;
L.build(1,tot,1);
R.build(1,tot,1);
int maxlen,num,t;
maxlen=0;
for(i=1;i<=n;i++){
for(j=0;j<ques[i].size();j++){
t=lower_bound(pos+1,pos+1+tot,ques[i][j].second)-pos;
if(t==1)num=1;
else num=L.question(1,t-1,1)+1;
f1[ques[i][j].first ]=num;
}
t=lower_bound(pos+1,pos+1+tot,a[i])-pos;
if(t==1)f[i]=1;
else f[i]=L.question(1,t-1,1)+1;
L.update(t,f[i],1);
maxlen=max(maxlen,f[i]);
}
for(i=n;i>=1;i--){
for(j=0;j<ques[i].size();j++){
t=lower_bound(pos+1,pos+1+tot,ques[i][j].second)-pos;
if(t==tot)num=1;
else num=R.question(t+1,tot,1)+1;
g1[ques[i][j].first ]=num;
}
t=lower_bound(pos+1,pos+1+tot,a[i])-pos;
if(t==tot)g[i]=1;
else g[i]=R.question(t+1,tot,1)+1;
R.update(t,g[i],1);
}
for(i=1;i<=n;i++){
cnt[i]=0;
}
for(i=1;i<=n;i++){
if(f[i]+g[i]-1==maxlen){
cnt[f[i] ]++;
}
}
int ans;
for(i=1;i<=m;i++){
if(f[c[i] ]+g[c[i] ]-1==maxlen && cnt[f[c[i] ] ]==1 ){
ans=maxlen-1;
}
else ans=maxlen;
ans=max(f1[i]+g1[i]-1,ans );
printf("%d\n",ans);
}
}
return 0;
}
/*
15 14
76 9 32 82 40 91 46 5 12 69 44 97 30 13 29
4 73
13 84
14 51
5 99
7 47
14 32
4 12
11 20
9 65
15 95
10 26
5 25
2 62
11 81
*/
codeforces #345 (Div. 1) D. Zip-line (线段树+最长上升子序列)的更多相关文章
- Codeforces #345 Div.1
Codeforces #345 Div.1 打CF有助于提高做题的正确率. Watchmen 题目描述:求欧拉距离等于曼哈顿距离的点对个数. solution 签到题,其实就是求有多少对点在同一行或同 ...
- Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq
B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...
- Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) F. Souvenirs 线段树套set
F. Souvenirs 题目连接: http://codeforces.com/contest/765/problem/F Description Artsem is on vacation and ...
- Codeforces Round #603 (Div. 2) E. Editor(线段树)
链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...
- Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并
D. Developing Game Pavel is going to make a game of his dream. However, he knows that he can't mak ...
- Codeforces Round #530 (Div. 2) F (树形dp+线段树)
F. Cookies 链接:http://codeforces.com/contest/1099/problem/F 题意: 给你一棵树,树上有n个节点,每个节点上有ai块饼干,在这个节点上的每块饼干 ...
- Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- Codeforces Round #305 (Div. 2) D题 (线段树+RMQ)
D. Mike and Feet time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
随机推荐
- gin框架的路由源码解析
前言 本文转载至 https://www.liwenzhou.com/posts/Go/read_gin_sourcecode/ 可以直接去原文看, 比我这里直观 我这里只是略微的修改 正文 gin的 ...
- Log4j配置按照文件大小和日期分割日志文件
目录 Log4j 下载地址 文件大小分割日志文件 以日期分割每天产生一个日志文件 自定义信息输出到日志文件 Log4j 下载地址 Log4j是Apache的一个开源项目,通过使用Log4j,我们可以控 ...
- LeetCode653. 两数之和 IV - 输入 BST
题目 直接暴力 1 class Solution { 2 public: 3 vector<int>ans; 4 bool findTarget(TreeNode* root, int k ...
- 什么是Etcd,如何运维Etcd ?
介绍 ETCD 是一个分布式.可靠的 key-value 存储的分布式系统,用于存储分布式系统中的关键数据:当然,它不仅仅用于存储,还提供配置共享及服务发现:基于Go语言实现. ETCD的特点 简单: ...
- mail Header Injection Exploit
Preventing Email Header Injection - PHundamental PHP Best Practices - http://nyphp.org/phundamentals ...
- 栈 堆 stack heap 堆内存 栈内存 内存分配中的堆和栈 掌握堆内存的权柄就是返回的指针 栈是面向线程的而堆是面向进程的。 new/delete and malloc/ free 指针与内存模型
小结: 1.栈内存 为什么快? Due to this nature, the process of storing and retrieving data from the stack is ver ...
- cookie中的domain和path
div.example { background-color: rgba(229, 236, 243, 1); color: rgba(0, 0, 0, 1); padding: 0.5em; mar ...
- 内存屏障 WriteBarrier 垃圾回收 屏障技术
https://baike.baidu.com/item/内存屏障 内存屏障,也称内存栅栏,内存栅障,屏障指令等, 是一类同步屏障指令,是CPU或编译器在对内存随机访问的操作中的一个同步点,使得此点之 ...
- C++学习之STL(一)vector
前言 C++ Primer Plus读书笔记(三)复合类型 中已经简单介绍过vector是什么,这个系列主要是介绍STL特性. 声明 vector<ElemType> c; //创建一个空 ...
- 日记 + sb错误
置顶消息cpdd 1.29 完了,文化课没了 我是废物 1.28 更新了自己的副标题 前副标题:Future never has to do with past time,but present ti ...