codeforces #345 (Div. 1) D. Zip-line (线段树+最长上升子序列)
Vasya has decided to build a zip-line on trees of a nearby forest. He wants the line to be as long as possible but he doesn't remember exactly the heights of all trees in the forest. He is sure that he remembers correct heights of all trees except, possibly,
one of them.
It is known that the forest consists of n trees staying in a row numbered from left to right with integers from 1 to n.
According to Vasya, the height of the i-th tree is equal to hi.
The zip-line of length k should hang over k (1 ≤ k ≤ n)
trees i1, i2, ..., ik (i1 < i2 < ... < ik)
such that their heights form an increasing sequence, that is hi1 < hi2 < ... < hik.
Petya had been in this forest together with Vasya, and he now has q assumptions about the mistake in Vasya's sequence h.
His i-th assumption consists of two integers ai and bi indicating
that, according to Petya, the height of the tree numbered ai is
actually equal to bi.
Note that Petya's assumptions are independent from each other.
Your task is to find the maximum length of a zip-line that can be built over the trees under each of the q assumptions.
In this problem the length of a zip line is considered equal to the number of trees that form this zip-line.
The first line of the input contains two integers n and m (1 ≤ n, m ≤ 400 000) —
the number of the trees in the forest and the number of Petya's assumptions, respectively.
The following line contains n integers hi (1 ≤ hi ≤ 109) —
the heights of trees according to Vasya.
Each of the following m lines contains two integers ai and bi (1 ≤ ai ≤ n, 1 ≤ bi ≤ 109).
For each of the Petya's assumptions output one integer, indicating the maximum length of a zip-line that can be built under this assumption.
4 4
1 2 3 4
1 1
1 4
4 3
4 5
4
3
3
4
4 2
1 3 2 6
3 5
2 4
4
3
Consider the first sample. The first assumption actually coincides with the height remembered by Vasya. In the second assumption the heights of the trees are (4, 2, 3, 4),
in the third one they are (1, 2, 3, 3) and in the fourth one they are (1, 2, 3, 5).
题意:给你n个数,有q个询问,每一次替换c上的位置为d,问替换后的最长严格上升子序列的长度是多少。
思路:如果普通的替换再查找肯定超时了,所以我们要用线段树来处理。我们设f[i],g[i]分别为以i位置为尾点和起始点的最长严格上升子序列的长度,这个可以用线段树O(nlogn)的复杂度求出来,记录最长上升子序列的长度为maxlen,然后我们再设f1[i],f2[i]表示询问i替换后,询问替换的位置为c,以c位置为尾点和起始点的最长上升子序列长度。接下来我们要判断替换的节点是不是"关键点","关键点"的意思是,如果原来序列没有这个位置的点,那么原来序列的最长上升子序列的长度达不到maxlen。那么这个要怎么判断呢,我们可以开一个数组cnt[i],表示对于一个节点j,以j为尾节点的最长上升子序列的长度为i,且f[j]+g[j]-1==maxlen的这样符合条件的j点的个数总和。对于每一个位置,先判断f[i]+g[i]-1是不是等于maxlen,如果等于maxlen,那么我们就把cnt[f[i]]++。然后对于每一个询问,ans=max(是不是为关键点?maxlen:maxlen-1
,f1[i]+g1[i]-1 )。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 400050
vector<pair<int,int> >ques[maxn]; //<idx,num>
int ans[maxn],a[maxn],pos[2*maxn];
int f1[maxn],g1[maxn],f[maxn],g[maxn];
int cnt[maxn];
int c[maxn],d[maxn];
struct node1{
struct node{
int l,r,maxlen;
}b[8*maxn];
void build(int l,int r,int th)
{
int mid;
b[th].l=l;b[th].r=r;
b[th].maxlen=0;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,th*2);
build(mid+1,r,th*2+1);
}
int question(int l,int r,int th)
{
int mid;
if(b[th].l==l && b[th].r==r){
return b[th].maxlen;
}
mid=(b[th].l+b[th].r)/2;
if(r<=mid)return question(l,r,th*2);
else if(l>mid)return question(l,r,th*2+1);
return max(question(l,mid,th*2),question(mid+1,r,th*2+1) );
}
void update(int idx,int num,int th)
{
int mid;
if(b[th].l==idx && b[th].r==idx){
b[th].maxlen=num;return;
}
mid=(b[th].l+b[th].r)/2;
if(idx<=mid)update(idx,num,th*2);
else update(idx,num,th*2+1);
b[th].maxlen=max(b[th*2].maxlen,b[th*2+1].maxlen);
}
}L,R;
int main()
{
int n,m,i,j,tot;
while(scanf("%d%d",&n,&m)!=EOF)
{
int tot=0;
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
tot++;pos[tot]=a[i];
}
for(i=1;i<=m;i++){
scanf("%d%d",&c[i],&d[i]);
ques[c[i] ].push_back(make_pair(i,d[i] ) );
tot++;pos[tot]=d[i];
}
sort(pos+1,pos+1+tot);
tot=unique(pos+1,pos+1+tot)-pos-1;
L.build(1,tot,1);
R.build(1,tot,1);
int maxlen,num,t;
maxlen=0;
for(i=1;i<=n;i++){
for(j=0;j<ques[i].size();j++){
t=lower_bound(pos+1,pos+1+tot,ques[i][j].second)-pos;
if(t==1)num=1;
else num=L.question(1,t-1,1)+1;
f1[ques[i][j].first ]=num;
}
t=lower_bound(pos+1,pos+1+tot,a[i])-pos;
if(t==1)f[i]=1;
else f[i]=L.question(1,t-1,1)+1;
L.update(t,f[i],1);
maxlen=max(maxlen,f[i]);
}
for(i=n;i>=1;i--){
for(j=0;j<ques[i].size();j++){
t=lower_bound(pos+1,pos+1+tot,ques[i][j].second)-pos;
if(t==tot)num=1;
else num=R.question(t+1,tot,1)+1;
g1[ques[i][j].first ]=num;
}
t=lower_bound(pos+1,pos+1+tot,a[i])-pos;
if(t==tot)g[i]=1;
else g[i]=R.question(t+1,tot,1)+1;
R.update(t,g[i],1);
}
for(i=1;i<=n;i++){
cnt[i]=0;
}
for(i=1;i<=n;i++){
if(f[i]+g[i]-1==maxlen){
cnt[f[i] ]++;
}
}
int ans;
for(i=1;i<=m;i++){
if(f[c[i] ]+g[c[i] ]-1==maxlen && cnt[f[c[i] ] ]==1 ){
ans=maxlen-1;
}
else ans=maxlen;
ans=max(f1[i]+g1[i]-1,ans );
printf("%d\n",ans);
}
}
return 0;
}
/*
15 14
76 9 32 82 40 91 46 5 12 69 44 97 30 13 29
4 73
13 84
14 51
5 99
7 47
14 32
4 12
11 20
9 65
15 95
10 26
5 25
2 62
11 81
*/
codeforces #345 (Div. 1) D. Zip-line (线段树+最长上升子序列)的更多相关文章
- Codeforces #345 Div.1
Codeforces #345 Div.1 打CF有助于提高做题的正确率. Watchmen 题目描述:求欧拉距离等于曼哈顿距离的点对个数. solution 签到题,其实就是求有多少对点在同一行或同 ...
- Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq
B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...
- Codeforces Round #397 by Kaspersky Lab and Barcelona Bootcamp (Div. 1 + Div. 2 combined) F. Souvenirs 线段树套set
F. Souvenirs 题目连接: http://codeforces.com/contest/765/problem/F Description Artsem is on vacation and ...
- Codeforces Round #603 (Div. 2) E. Editor(线段树)
链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...
- Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并
D. Developing Game Pavel is going to make a game of his dream. However, he knows that he can't mak ...
- Codeforces Round #530 (Div. 2) F (树形dp+线段树)
F. Cookies 链接:http://codeforces.com/contest/1099/problem/F 题意: 给你一棵树,树上有n个节点,每个节点上有ai块饼干,在这个节点上的每块饼干 ...
- Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)
D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- Codeforces Round #305 (Div. 2) D题 (线段树+RMQ)
D. Mike and Feet time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
随机推荐
- 一文彻底理解IO多路复用
在讲解IO多路复用之前,我们需要预习一下文件以及文件描述符. 什么是文件 程序员使用I/O最终都逃不过文件. 因为这篇同属于高性能.高并发系列,讲到高性能.高并发就离不开Linux/Unix,因此这里 ...
- Mac安装mysqlclient
前言 祝大家身体健康 正文 如何在Mac上安装Python的mysqlclient模块 安装mysql brew install mysql 安装mysql-client brew install m ...
- 【LeetCode】365.水壶问题
题目描述 解题思路 思路一:裴蜀定理-数学法 由题意,每次操作只会让桶里的水总量增加x或y,或者减少x或y,即会给水的总量带来x或y的变化量,转为数字描述即为:找到一对整数a,b使得下式成立: ax+ ...
- 【Flutter】容器类组件之填充
前言 Padding可以给其子节点添加填充(留白). 接口描述 class EdgeInsets extends EdgeInsetsGeometry { // 分别指定四个方向的填充 const E ...
- Jenkins上实现Python + Jenkins + Allure Report 接口自动化测试持续集成,最终测试报告用allure-report进行展示
项目介绍 接口功能测试应用:http://www.weather.com.cn/data/cityinfo/<city_code>.html 测试功能:获取对应城市的天气预报 源码:Pyt ...
- DHCP最佳实践(二)
这是Windows DHCP最佳实践和技巧的最终指南. 如果您有任何最佳做法或技巧,请在下面的评论中发布它们. 在本指南(二)中,我将分享以下DHCP最佳实践和技巧. 从DHCP作用域中排除IP 了解 ...
- 在项目中应该使用Boolean还是使用boolean?
起因 在公司看代码时,看到了使用Boolean对象来完成业务逻辑判断的操作.和我的习惯不一致,于是引起了一些反思. boolean和Boolean的差别咱就不说了,我们仅探讨使用boolean与Boo ...
- 08--Docker安装Mysql
1.在hub.docker.com中查找5.7版本 2.拉取mysql docker pull mysql:5.7 3.启动mysql镜像 docker run -p 3306:3306 --name ...
- Java多线程基础知识笔记(持续更新)
多线程基础知识笔记 一.线程 1.基本概念 程序(program):是为完成特定任务.用某种语言编写的一组指令的集合.即指一段静态的代码,静态对象. 进程(process):是程序的一次执行过程,或是 ...
- nokogiri Fail install on Ruby 2.3 for Windows #1456 <From github>
Q: gem install railson nokogiri install fail with error: 'nokogiri requires Ruby version < 2.3, & ...