Codeforces Round #641 (Div. 2)
只写了A~D
题意:f(n)就是n的第二小因数,问执行k次 n=f(n)+n 后的结果。
题解:如果一直找第二小的因子的话,1e9肯定得t。看下边样例解释就会惊奇的发现,执行次数多了,n一定会变成2的倍数,然后就可以剪枝了。如果n不是2的倍数,那么就执行 n=f(n)+n,k-- 直到n是2的倍数(当然k得>0),最后再加上k*2。
1 #include<bits/stdc++.h>
2 #define ll long long
3 using namespace std;
4
5 int main()
6 {
7 ios::sync_with_stdio(false);
8 cin.tie(0);
9 cout.tie(0);
10 int t;
11 cin>>t;
12 while(t--){
13 ll n,k;
14 cin>>n>>k;
15 while(k){
16 if(n%2==0) break;
17 for(ll i=2;i<=n;i++){
18 if(n%i==0){
19 n+=i;
20 break;
21 }
22 }
23 k--;
24 }
25 n=n+k*2;
26 cout<<n<<endl;
27 }
28 return 0;
29 }
题意:让你找出一个序列使得他在原序列满足一下条件 i%j==0&&a[i]>a[j]; 问最长的序列长度
题解:找1~n每个数当因子时最长的符合条件的序列。
1 #include<bits/stdc++.h>
2 #define ll long long
3 using namespace std;
4
5 ll a[100100];
6 ll dp[100100];
7
8 int main()
9 {
10 ios::sync_with_stdio(false);
11 cin.tie(0);
12 cout.tie(0);
13 ll t;
14 cin>>t;
15 while(t--){
16 ll n;
17 cin>>n;
18 for(ll i=1;i<=n;i++) cin>>a[i];
19 ll ans=0 ;
20 for (ll i=n;i>=1;i--){
21 dp[i]=1;
22 for (ll j=i;j<=n;j+=i){
23 if(a[j]>a[i])
24 dp[i]=max(dp[i],dp[j]+1);
25 }
26 ans = max(dp[i],ans);
27 }
28 cout<<ans<<endl;
29 }
30 return 0;
31 }
题意:求这个序列所有数两两之间的 lcm 的 gcd。
题解:和a1 lcm 后的所有数的 gcd 就是lcm(a1,gcd(a2,a3, ......)),a2就是lcm(a2,gcd(a3,a4, ......)).....,然后再把这些数就行gcd
证明结论:
gcd( lcm (a,b), lcm(a,c) )
= gcd( a*b/gcd(a,b), a*c/gcd(a,c) )
= a*gcd( b/gcd(a,b), c/gcd(a,c) );
lcm( a, gcd(b, c) )=a*gcd(b, c) / gcd(a,gcd(b, c));
最大公约数的百度百科的性质那一栏也能找到这个结论。
1 #include<bits/stdc++.h>
2 #define ll long long
3 using namespace std;
4
5 ll a[100100];
6 ll p[200100];
7
8 int main()
9 {
10 ios::sync_with_stdio(false);
11 cin.tie(0);
12 cout.tie(0);
13 ll n;
14 cin>>n;
15 for(ll i=1;i<=n;i++) cin>>a[i];
16 ll ans;
17 p[n]=a[n];
18 for(ll i=n-1;i>0;i--){
19 p[i]=__gcd(p[i+1],a[i]);
20 }
21 ans=a[1]*p[2]/__gcd(a[1],p[2]);
22 for(ll i=2;i<=n;i++){
23 ans=__gcd(ans,p[i+1]*a[i]/__gcd(a[i],p[i+1]));
24 }
25 cout<<ans<<endl;
26 return 0;
27 }
题意:数组里一段数可以都变成他的中位数,问整个序列能不能变成k。
题解:
①判断一下序列里是否有k这个数,没有的话就直接输出no;
②如果整个序列 >=k 的个数比 <k 的个数多,就输出yes;
③判断一下序列里是否有一段长度>2的连续子序列使得 >=k 的个数比 <k 的个数多,有的话就输出yes,没有就输出no;(代码略丑)
1 #include<bits/stdc++.h>
2 #define ll long long
3 using namespace std;
4
5 int a[100100];
6 int p[100100];
7
8 int main()
9 {
10 ios::sync_with_stdio(false);
11 cin.tie(0);
12 cout.tie(0);
13 int t;
14 cin>>t;
15 while(t--){
16 int n,k;
17 cin>>n>>k;
18 for(int i=1;i<=n;i++) cin>>a[i],p[i]=0;
19 int flag=0;
20 for(int i=1;i<=n;i++){
21 if(a[i]==k) flag=1;
22 if(a[i]>=k) p[i]=1;
23 else p[i]=-1;
24 }
25 if(!flag) {cout<<"no"<<endl;continue;}
26 flag=0;
27 for(int i=1;i<=n;i++){
28 p[i]+=p[i-1];
29 }
30 if(p[n]>0) flag=1;
31 int minn=p[0];
32 for(int i=2;i<=n;i++){
33 if(p[i]>minn){
34 flag=1;
35 break;
36 }
37 if(p[i-1]<minn){
38 minn=p[i-1];
39 }
40 }
41 if(!flag) {cout<<"no"<<endl;continue;}
42 cout<<"yes"<<endl;
43 }
44 return 0;
45 }
Codeforces Round #641 (Div. 2)的更多相关文章
- Codeforces Round #641 (Div. 2) D. Orac and Medians (贪心)
题意:有一个长度为\(n\)的数组,问能否通过多次使某个区间的所有元素变成这个区间的中位数,来使整个数组变成题目所给定的\(k\). 题解:首先这个\(k\)一定要在数组中存在,然后我们对中位数进行考 ...
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
随机推荐
- 【Java基础】集合
集合 集合概述 一方面, 面向对象语言对事物的体现都是以对象的形式,为了方便对多个对象 的操作,就要对对象进行存储.另一方面,使用 Array 存储对象方面具有一些弊端,而 Java 集合就像一种容器 ...
- 浅谈sql索引
索引是什么 假如你手上有一个你公司的客户表,老板说找什么客户你就得帮他找出来. 客户不多的时候,你拿着手指一行一行滑,费不了多少时间就能找到. 后来公司做大了,客户越来越多,好几页的客户,你发现,一行 ...
- CentOS | python3.7安装指南
前言: centos系统本身默认安装有python2.x,版本x根据不同版本系统有所不同 可通过 python --V 或 python --version 查看系统自带的python版本 有一些系统 ...
- 一次snapshot迁移引发的Hbase RIT(hbase2.1.0-cdh6.3.0)
1. 问题起因 通过snapshot做跨集群数据同步时,在执行拷贝脚本里没有指定所有者及所有组,导致clone时没有权限,客户端卡死.master一直报错,经过一系列操作后,导致RIT异常. 2. 异 ...
- Xshell与Xftp免费下载安装及步骤
Xshell与Xftp免费下载安装及步骤 1.进入Xshell的官网:https://www.netsarang.com/zh/ 加粗样式 2.选择你需要的软件进行下载如:Xshell 3.选择家庭和 ...
- 【Oracle】迁移表到其他的表空间
有些时候需要将表迁移到其他的表空间,在将表空间做相关的操作 下面是命令如何迁移表空间 SQL> alter table 表名 move tablespace 表空间名; 如果有很多的表想要迁移的 ...
- 【Oracle】Script to Collect DRM Information (drmdiag.sql) (文档 ID 1492990.1)
脚本对应如下: The following (drmdiag.sql) is a script to collect information related to DRM (Dyanamic Reso ...
- linux中进制转换
方式一:使用$[]或$(()) 格式为:$[base#number]或$((base#number)),其中base为进制,number为对应进制数. 这种方式输入2进制.16进制等,但只能输出为10 ...
- ts类与修饰符
最近在用egret做游戏,就接触到了ts,刚开始的时候觉得类挺难的,毕竟大多数的JavaScript工程师工作中不怎么需要用到这个,但是学起来就不愿意撒手了,真香! typescript其实是es6的 ...
- OLE NumberFormat
设置单元格的数字格式, $3.00 想搞出这样的格式,在VBA里的格式定义如下 $#,##0.00;-$#,##0.00 可是在abap里,就是不行.最后尝试了很多次,原来在在$前面加\变成\$#,# ...