题目

题意:

编写一个程序,给定一个网络规范和破坏每个连接的成本,确定要切断哪个连接,以便将首都和最大的城市分离到尽可能低的成本。

分割-----------------------------------------

这道题的意思要把一个图分成两部分,要把点1和点2分开。隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边。
这题很明显是最小割,也就是最大流。把1当成源点,2当成汇点。
问题是要求最小割应该隔断那条边。

输入:

输入文件包含几组输入。每一组的描述如下。每个集合的第一行有两个整数,用空格隔开:第一个是网络中的城市数量n,最多为50。第二个是连接的总数,m,最多500。以下m行指定连接。每条线由三部分组成,中间用空格隔开:前两部分是由这两部分连接起来的城市(数字在1 - n范围内)。然后是切断连接的成本(范围为1到40000000的整数)。在这个列表中,每对引用最多只能出现一次。当n和m的值为0时,输入终止。这种情况不应该处理。对于每个输入集,首都是第1个城市,最大的城市是第2个城市。

输出:

对于每个输入集,您应该生成几行输出。每个输入集的输出描述如下:每个输入集的输出应该是城市对(即数字),它们之间的连接应该被切断(以任何顺序),每对在一行,数字之间用空格隔开。如果有多个解决方案,任何一个都可以。在每个输入集的输出之后打印空行。

题解:

 1 void addedge(int u, int v, int w)  //建双向边
2 { //u为起点,v为终点,w为边上的流量
3 edge[tot].v = v;
4 edge[tot].w = w;
5 edge[tot].next = head[u];
6 head[u] = tot++;
7
8 edge[tot].v = u;
9 edge[tot].w = w;
10 edge[tot].next = head[v];
11 head[v] = tot++;
12 return;
13 }

我之前就有一个疑问就是,为什么在建有向边的时候还要建一条容量为0的反向边。

其实这就是为了反悔之前的操作,因为我们第一次跑最大流的时候肯定会有好多路都可以跑到终点。但是我们最后要的是最大流,这就要考虑到最优策略,所以我们之前走过的路可能要改变。这个时候建立反向边的作用就体现了

代码:

//本题是可以双向走,那么我们正向也可以反向也可以,所以我们在建反向边的时候就不能给它初始值为0,因为
//他刚开始反向边就可以走 //在最后一次bfs之后,肯定就会出现断层(即,到不了终点),这个时候因为中间出现了流量为0所以到不了,
//那么这些流量为0就是我们删去的边
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=10005;
const int INF=0x3f3f3f3f;
int head[maxn],cnt,st,en,dis[maxn],cur[maxn],xx[maxn],yy[maxn];
struct edge
{
int v,next,c,flow;
} e[100005];
void add_edge(int x,int y,int z)
{
e[cnt].v=y;
e[cnt].c=z;
e[cnt].flow=0;
e[cnt].next=head[x];
head[x]=cnt++;
}
bool bfs()
{
memset(dis,0,sizeof(dis));
dis[st]=1;
queue<int>r;
r.push(st);
while(!r.empty())
{
int x=r.front();
r.pop();
for(int i=head[x];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(!dis[v] && e[i].c>e[i].flow)
{
dis[v]=dis[x]+1;
r.push(v);
}
}
}
return dis[en];
}
int dinic(int s,int limit)
{
if(s==en || !limit) return limit;
int ans=0;
for(int &i=cur[s];i!=-1;i=e[i].next)
{
int v=e[i].v,feed;
if(dis[v]!=dis[s]+1) continue;
feed=dinic(v,min(limit,e[i].c-e[i].flow));
if(feed)
{
e[i].flow+=feed;
e[i^1].flow-=feed;
limit-=feed;
ans+=feed;
if(limit==0) break;
}
}
if(!ans) dis[s]=-1;
return ans;
}
int main()
{
int s,d,n,m;
while(~scanf("%d%d",&n,&m) && n+m)
{
memset(head,-1,sizeof(head));
cnt=0;
st=1;
en=2;
int x,y,z;
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&x,&y,&z);
xx[i]=x;
yy[i]=y;
add_edge(x,y,z);
add_edge(y,x,z);
} int ans=0;
while(bfs())
{
for(int i=0; i<=n; i++)
cur[i]=head[i];
ans+=dinic(st,INF);
}
for(int i=1;i<=m;++i)
{
if((!dis[xx[i]] && dis[yy[i]]) || (dis[xx[i]] && !dis[yy[i]]))
{
printf("%d %d\n",xx[i],yy[i]);
}
}
printf("\n");
}
return 0;
}

UVA 10480 Sabotage (最大流) 最小割边的更多相关文章

  1. Uva 10480 Sabotage 最大流

    表示自从学了网络流,就基本上是一直用dinic 这个题一看就是用最大流,作为常识,两个点之间的最大流等于最小割 但是这个题需要输出割边,然后我就不会了,dinic判流量我觉得也可做,但是一直wa 然后 ...

  2. UVA 10480 Sabotage (网络流,最大流,最小割)

    UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...

  3. UVA - 10480 Sabotage 最小割,输出割法

    UVA - 10480 Sabotage 题意:现在有n个城市,m条路,现在要把整个图分成2部分,编号1,2的城市分成在一部分中,拆开每条路都需要花费,现在问达成目标的花费最少要隔开那几条路. 题解: ...

  4. UVA - 10480 Sabotage【最小割最大流定理】

    题意: 把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边.这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边. ...

  5. J - Sabotage - UVA 10480(最大流)

    题目大意:旧政府有一个很庞大的网络系统,可以很方便的指挥他的城市,起义军为了减少伤亡所以决定破坏他们的网络,使他们的首都(1号城市)和最大的城市(2号城市)不能联系,不过破坏不同的网络所花费的代价是不 ...

  6. UVA - 10480 Sabotage (Dinic)

    The regime of a small but wealthy dictatorship has been abruptly overthrown by an unexpected rebel-l ...

  7. UVA 10480 Sabotage (最大流最小割)

    题目链接:点击打开链接 题意:把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边. 这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点. 问题是 ...

  8. UVA 10480 Sabotage

    最小割+输出方案 #include<cstdio> #include<cstring> #include<string> #include<cmath> ...

  9. 最大流&最小割 - 专题练习

    [例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...

随机推荐

  1. python_元组(tuple)

    #tuple(),元组不可以修改,不能对其进行增加或删除操作,元组是有序的 #1.定义 tu_1 = () #定义一个空元组 tu_2 = (1,2,'alex',[3,4],(5,6,7),True ...

  2. 【译】Async/Await(二)——Futures

    原文标题:Async/Await 原文链接:https://os.phil-opp.com/async-await/#multitasking 公众号: Rust 碎碎念 翻译 by: Praying ...

  3. JS navigator.userAgent

    var u = navigator.userAgent; var isAndroid = u.indexOf('Android') > -1 || u.indexOf('Adr') > - ...

  4. SAP系统跨平台字符编码转换

    SAP系统在进行了夸平台的迁移,可能会遇到操作系统层文件编码不同,导致SAP系统无法识别或者乱码的问题.例如SAP系统从AIX平台迁移到linux平台,SAP应用服务器的编码会发生变化,从4102变化 ...

  5. BDC应用

    第一步:SHDB或者是SM35进入BDC录制事务.开始录制. 第二部:保存录制的记录. 第三步:在你自己的程序中定义一个内表如:ITAB TYPE TABLE OF BDCDATA. 再定义一个工作空 ...

  6. 3A限流IC,带短路保护,PW1503和PW1502

    一般说明 PW1503,PW1502是超低RDS(ON)开关,具有可编程的电流限制,以保护电源源于过电流和短路保护.它具有超温保护以及反向闭锁功能. PW1503,PW1502采用薄型(1毫米)5针薄 ...

  7. django之orm单表查询

    这几天重新学习了一下django的orm,以此作为记录来分享. Part1:修改配置,生成表 在写数据和查数据之前,首先先得把django配置一下,具体配置如下: 1.先在公共项目的settings中 ...

  8. Jmeter函数助手大全

    __BeanShell 入参:BeanShell语法的程序语句或者Bean Shell脚本文件 示例: ${__BeanShell(123*456,)}:返回56088: ${__BeanShell( ...

  9. Linux性能监测(系统监测统计命令详解)

    通过这个命令,可以最简便的看出系统当前基本状态信息,这里面最有用是负载指标,如果你还想查看当前系统的CPU/内存以及相关的进程状态,可以使用TOP命令. TOP 通过TOP命令可以详细看出当前系统的C ...

  10. Vue技术点整理-指令

    我们通常给一个元素添加 v-if / v-show 来做权限管理,但如果判断条件繁琐且多个地方需要判断,这种方式的代码不仅不优雅而且冗余. 针对这种情况,我们可以通过全局自定义指令来处理:我们先在新建 ...