UVA 10480 Sabotage (最大流) 最小割边
题意:
编写一个程序,给定一个网络规范和破坏每个连接的成本,确定要切断哪个连接,以便将首都和最大的城市分离到尽可能低的成本。
分割-----------------------------------------
这道题的意思要把一个图分成两部分,要把点1和点2分开。隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边。
这题很明显是最小割,也就是最大流。把1当成源点,2当成汇点。
问题是要求最小割应该隔断那条边。
输入:
输入文件包含几组输入。每一组的描述如下。每个集合的第一行有两个整数,用空格隔开:第一个是网络中的城市数量n,最多为50。第二个是连接的总数,m,最多500。以下m行指定连接。每条线由三部分组成,中间用空格隔开:前两部分是由这两部分连接起来的城市(数字在1 - n范围内)。然后是切断连接的成本(范围为1到40000000的整数)。在这个列表中,每对引用最多只能出现一次。当n和m的值为0时,输入终止。这种情况不应该处理。对于每个输入集,首都是第1个城市,最大的城市是第2个城市。
输出:
对于每个输入集,您应该生成几行输出。每个输入集的输出描述如下:每个输入集的输出应该是城市对(即数字),它们之间的连接应该被切断(以任何顺序),每对在一行,数字之间用空格隔开。如果有多个解决方案,任何一个都可以。在每个输入集的输出之后打印空行。
题解:
1 void addedge(int u, int v, int w) //建双向边
2 { //u为起点,v为终点,w为边上的流量
3 edge[tot].v = v;
4 edge[tot].w = w;
5 edge[tot].next = head[u];
6 head[u] = tot++;
7
8 edge[tot].v = u;
9 edge[tot].w = w;
10 edge[tot].next = head[v];
11 head[v] = tot++;
12 return;
13 }
我之前就有一个疑问就是,为什么在建有向边的时候还要建一条容量为0的反向边。
其实这就是为了反悔之前的操作,因为我们第一次跑最大流的时候肯定会有好多路都可以跑到终点。但是我们最后要的是最大流,这就要考虑到最优策略,所以我们之前走过的路可能要改变。这个时候建立反向边的作用就体现了
代码:
//本题是可以双向走,那么我们正向也可以反向也可以,所以我们在建反向边的时候就不能给它初始值为0,因为
//他刚开始反向边就可以走 //在最后一次bfs之后,肯定就会出现断层(即,到不了终点),这个时候因为中间出现了流量为0所以到不了,
//那么这些流量为0就是我们删去的边
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=10005;
const int INF=0x3f3f3f3f;
int head[maxn],cnt,st,en,dis[maxn],cur[maxn],xx[maxn],yy[maxn];
struct edge
{
int v,next,c,flow;
} e[100005];
void add_edge(int x,int y,int z)
{
e[cnt].v=y;
e[cnt].c=z;
e[cnt].flow=0;
e[cnt].next=head[x];
head[x]=cnt++;
}
bool bfs()
{
memset(dis,0,sizeof(dis));
dis[st]=1;
queue<int>r;
r.push(st);
while(!r.empty())
{
int x=r.front();
r.pop();
for(int i=head[x];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(!dis[v] && e[i].c>e[i].flow)
{
dis[v]=dis[x]+1;
r.push(v);
}
}
}
return dis[en];
}
int dinic(int s,int limit)
{
if(s==en || !limit) return limit;
int ans=0;
for(int &i=cur[s];i!=-1;i=e[i].next)
{
int v=e[i].v,feed;
if(dis[v]!=dis[s]+1) continue;
feed=dinic(v,min(limit,e[i].c-e[i].flow));
if(feed)
{
e[i].flow+=feed;
e[i^1].flow-=feed;
limit-=feed;
ans+=feed;
if(limit==0) break;
}
}
if(!ans) dis[s]=-1;
return ans;
}
int main()
{
int s,d,n,m;
while(~scanf("%d%d",&n,&m) && n+m)
{
memset(head,-1,sizeof(head));
cnt=0;
st=1;
en=2;
int x,y,z;
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&x,&y,&z);
xx[i]=x;
yy[i]=y;
add_edge(x,y,z);
add_edge(y,x,z);
} int ans=0;
while(bfs())
{
for(int i=0; i<=n; i++)
cur[i]=head[i];
ans+=dinic(st,INF);
}
for(int i=1;i<=m;++i)
{
if((!dis[xx[i]] && dis[yy[i]]) || (dis[xx[i]] && !dis[yy[i]]))
{
printf("%d %d\n",xx[i],yy[i]);
}
}
printf("\n");
}
return 0;
}
UVA 10480 Sabotage (最大流) 最小割边的更多相关文章
- Uva 10480 Sabotage 最大流
表示自从学了网络流,就基本上是一直用dinic 这个题一看就是用最大流,作为常识,两个点之间的最大流等于最小割 但是这个题需要输出割边,然后我就不会了,dinic判流量我觉得也可做,但是一直wa 然后 ...
- UVA 10480 Sabotage (网络流,最大流,最小割)
UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...
- UVA - 10480 Sabotage 最小割,输出割法
UVA - 10480 Sabotage 题意:现在有n个城市,m条路,现在要把整个图分成2部分,编号1,2的城市分成在一部分中,拆开每条路都需要花费,现在问达成目标的花费最少要隔开那几条路. 题解: ...
- UVA - 10480 Sabotage【最小割最大流定理】
题意: 把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边.这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边. ...
- J - Sabotage - UVA 10480(最大流)
题目大意:旧政府有一个很庞大的网络系统,可以很方便的指挥他的城市,起义军为了减少伤亡所以决定破坏他们的网络,使他们的首都(1号城市)和最大的城市(2号城市)不能联系,不过破坏不同的网络所花费的代价是不 ...
- UVA - 10480 Sabotage (Dinic)
The regime of a small but wealthy dictatorship has been abruptly overthrown by an unexpected rebel-l ...
- UVA 10480 Sabotage (最大流最小割)
题目链接:点击打开链接 题意:把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边. 这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点. 问题是 ...
- UVA 10480 Sabotage
最小割+输出方案 #include<cstdio> #include<cstring> #include<string> #include<cmath> ...
- 最大流&最小割 - 专题练习
[例1][hdu5889] - 算法结合(BFS+Dinic) 题意 \(N\)个点\(M\)条路径,每条路径长度为\(1\),敌人从\(M\)节点点要进攻\(1\)节点,敌人总是选择最优路径即最短路 ...
随机推荐
- python学习笔记 | wordcloud安装指南
问题: 直接在命令行输入: pip install wordcloud 不出意外,直接报错,显示缺失vc*****.bat,意思是缺失vc版本,这个安装方式基本可以扔掉. 解决: http://t.c ...
- wpf 中用 C# 代码创建 PropertyPath ,以对间接目标进行 Storyboard 动画.
如图,一个 Rectangle 一个 Button ,点击按钮时要通过动画完成对 Rectangle填充色的渐变动画. Xaml: 1 <Window 2 x:Class="WpfAp ...
- (二)数据源处理1-configparser读取.ini配置文件
import osimport configparsercurrent_path =os.path.dirname(__file__)#获取config当前文件路径config_file_path = ...
- JavaScript入门-函数function(二)
JavaScript入门-函数function(二) 递归函数 什么是递归函数? 递归简单理解就是,在函数体里,调用自己. //我们在求一个10的阶乘的时候,可能会这么做 //写一个循环 var to ...
- GitLab-CI/CD入门实操
以Spring boot项目为例.传统方式是本地生成jar包,FTP上传服务器,重启服务:如果是内网测试服,也可以在服务器上安装git,在服务器上编译打包.但这都需要人为干预,于是CI/CD就出现了. ...
- java 记录数据持续变化时间
1.需求:获取count为null和不为null的持续变化 [{count=0, time=0}, {count=10, time=1000}, {count=20, time=2000}, {cou ...
- 【.NET 与树莓派】矩阵按键
欢迎收看火星卫视,本期节目咱们严重探讨一下矩阵按键. 所谓矩阵按键,就是一个小键盘(其实一块PCB板),上面有几个 Key(开关),你不按下去的时候,电路是断开的,你按下去电路就会接通.至于说有多少个 ...
- 001.IT运维面试问题-Linux基础
Linux基础 简述Linux主流的发行版? Redhat.CentOS.Fedora.SuSE.Debian.Ubuntu.FreeBSD等. 简述Linux启动过程? ⑴开机BIOS自检,加载硬盘 ...
- net.core.somaxconn net.ipv4.tcp_max_syn_backlog
Linux参数-net.core.somaxconn与net.ipv4.tcp_max_syn_backlog_梁海江的博客-CSDN博客_net.ipv4.tcp_max_syn_backlog h ...
- 能够满足这样要求的哈希算法有很多,其中比较著名并且应用广泛的一个哈希算法,那就是MurmurHash 算法。尽管这个哈希算法在 2008 年才被发明出来,但现在它已经广泛应用到 Redis、MemCache、Cassandra、HBase、Lucene 等众多著名的软件中。
能够满足这样要求的哈希算法有很多,其中比较著名并且应用广泛的一个哈希算法,那就是MurmurHash 算法.尽管这个哈希算法在 2008 年才被发明出来,但现在它已经广泛应用到 Redis.MemCa ...