题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知)。问满足这些条件的最小的硬币数,也就是最小的正整数 X。

解法:转化一下题意就是 拓展欧几里德求解同余方程组了。我们可以得到 N 个方程:Mi*x+Ai=X。一些解释请看下面的代码。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 typedef long long LL;
7
8 LL aa[8],mm[8];
9
10 LL mabs(LL x) {return x>0?x:-x;}
11 LL exgcd(LL a,LL b,LL& x,LL& y)
12 {
13 if (!b) {x=1,y=0; return a;}
14 LL d,tx,ty;
15 d=exgcd(b,a%b,tx,ty);
16 x=ty,y=tx-(a/b)*ty;
17 return d;
18 }
19 int main()
20 {
21 int T,n;
22 scanf("%d",&T);
23 for (int kase=1;kase<=T;kase++)
24 {
25 scanf("%d",&n);
26 for (int i=1;i<=n;i++) scanf("%I64d",&mm[i]);
27 for (int i=1;i<=n;i++) scanf("%I64d",&aa[i]);
28 LL a,m,d,x,y;
29 a=aa[1],m=mm[1];
30 bool ok=false;
31 for (int i=2;i<=n;i++)
32 {
33 d=exgcd(m,mm[i],x,y);//mx-mm[i]y=aa[i]-a
34 if ((aa[i]-a)%d!=0) {ok=true;break;}
35 x=x*((aa[i]-a)/d);
36 LL t=mabs(mm[i]/d);
37 x=(x%t+t)%t;
38 a=m*x+a,m=m*mm[i]/d;//保证了x最小,a相应的也是最小的
39 }
40 LL ans;
41 if (ok) ans=-1;
42 else {ans=a; if (!ans) ans+=m;}
43 printf("Case %d: %I64d\n",kase,ans);
44 }
45 return 0;
46 }

【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)的更多相关文章

  1. 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)

    题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...

  2. 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)

    题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...

  3. 【poj 1061】青蛙的约会(数论--拓展欧几里德 求解同余方程)

    题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出&quo ...

  4. 【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)

    题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C)  statement; 问循环的次数,若"永不停息&q ...

  5. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  6. HDU3579:Hello Kiki(解一元线性同余方程组)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...

  7. hdu 3579 Hello Kiki

    不互质的中国剩余定理…… 链接http://acm.hdu.edu.cn/showproblem.php?pid=3579 #include<iostream>#include<st ...

  8. HDU 3579——Hello Kiki

    好久没写什么数论,同余之类的东西了. 昨天第一次用了剩余定理解题,今天上百度搜了一下hdu中国剩余定理.于是就发现了这个题目. 题目的意思很简单.就是告诉你n个m[i],和n个a[i].表示一个数对m ...

  9. hdu 3579 Hello Kiki (中国剩余定理)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. Harbor镜像删除回收?只看这篇

    最近,公司的技术平台,运维的破事儿颇多.Jira无法访问,ES堆内存不足,Jenkins频繁不工作..等等等,让我这个刚入门的小兵抓心脑肝,夜不能寐,关键时刻方恨经验薄弱呀!!一波未平,一波又起,这不 ...

  2. js 中const 定义的值是否能更改

    const定义的基本类型不能改变,但是定义的对象是可以通过修改对象属性等方法来改变的. 1. const aa=trueaa=falseconsole.log(aa)VM1089:2 Uncaught ...

  3. 【Redis3.0.x】实战案例

    Redis3.0.x 实战案例 简介 <Redis实战>的学习笔记和总结. 书籍链接 初识 Redis Redis 简介 Redis 是一个速度非常快的键值对存储数据库,它可以存储键和五种 ...

  4. LeetCode24 两两交换链表中的节点

    给定一个链表,两两交换其中相邻的节点,并返回交换后的链表. 示例: 给定 1->2->3->4, 你应该返回 2->1->4->3. 说明: 你的算法只能使用常数的 ...

  5. JavaFX之班级未交作业统计

    前言 最近转移了系统平台,用上了Ubuntu1804版本系统,原来用C#写的Windows窗体软件也不能用了,而且自己在班级上每周都需要收作业,所以写了这个软件.这篇博客主要记录这个JavaFX应用的 ...

  6. 使用Jenkins+Pipline 持构建自动化部署之安卓源码打包、测试、邮件通知

    一.引言 Jenkins 2.x的精髓是Pipeline as Code,那为什么要用Pipeline呢?jenkins1.0也能实现自动化构建,但Pipeline能够将以前project中的配置信息 ...

  7. React & Vue2 Butterfly图编排——让数据更自由地驱动DAG

    一.简介 Butterfly是由阿里云-数字产业产研部孵化出来的的图编辑器引擎,由咱们部门以及其他开发者共同维护开发,具有使用自由.定制性高的优势,已支持集团内外上百张画布,不夸张的说,我觉得可以算的 ...

  8. linux线程数限制与zabbix监控

    Linux最大线程数限制及当前线程数查询 最大线程数计算方式: n = total_memory/128k; Linux用户线程数限制而导致的程序异常为 java.lang.OutOfMemoryEr ...

  9. 爬虫系列 | 6、详解爬虫中BeautifulSoup4的用法

    bs4,全称BeautifulSoup 4 , 它是Python独有的一种解析方式.也就是说只有Python语言才可以通过这种方式去解析数据. BeautifulSoup 3 只支持Python2,所 ...

  10. SDUST数据结构 - 19级期末考试

    判断题: 选择题: 函数题: 6-1 统计二叉树叶子结点个数: 题目: 裁判测试程序样例: #include <stdio.h> #include <stdlib.h> typ ...