题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知)。问满足这些条件的最小的硬币数,也就是最小的正整数 X。

解法:转化一下题意就是 拓展欧几里德求解同余方程组了。我们可以得到 N 个方程:Mi*x+Ai=X。一些解释请看下面的代码。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 typedef long long LL;
7
8 LL aa[8],mm[8];
9
10 LL mabs(LL x) {return x>0?x:-x;}
11 LL exgcd(LL a,LL b,LL& x,LL& y)
12 {
13 if (!b) {x=1,y=0; return a;}
14 LL d,tx,ty;
15 d=exgcd(b,a%b,tx,ty);
16 x=ty,y=tx-(a/b)*ty;
17 return d;
18 }
19 int main()
20 {
21 int T,n;
22 scanf("%d",&T);
23 for (int kase=1;kase<=T;kase++)
24 {
25 scanf("%d",&n);
26 for (int i=1;i<=n;i++) scanf("%I64d",&mm[i]);
27 for (int i=1;i<=n;i++) scanf("%I64d",&aa[i]);
28 LL a,m,d,x,y;
29 a=aa[1],m=mm[1];
30 bool ok=false;
31 for (int i=2;i<=n;i++)
32 {
33 d=exgcd(m,mm[i],x,y);//mx-mm[i]y=aa[i]-a
34 if ((aa[i]-a)%d!=0) {ok=true;break;}
35 x=x*((aa[i]-a)/d);
36 LL t=mabs(mm[i]/d);
37 x=(x%t+t)%t;
38 a=m*x+a,m=m*mm[i]/d;//保证了x最小,a相应的也是最小的
39 }
40 LL ans;
41 if (ok) ans=-1;
42 else {ans=a; if (!ans) ans+=m;}
43 printf("Case %d: %I64d\n",kase,ans);
44 }
45 return 0;
46 }

【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)的更多相关文章

  1. 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)

    题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...

  2. 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)

    题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...

  3. 【poj 1061】青蛙的约会(数论--拓展欧几里德 求解同余方程)

    题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出&quo ...

  4. 【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)

    题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C)  statement; 问循环的次数,若"永不停息&q ...

  5. 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)

    题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...

  6. HDU3579:Hello Kiki(解一元线性同余方程组)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...

  7. hdu 3579 Hello Kiki

    不互质的中国剩余定理…… 链接http://acm.hdu.edu.cn/showproblem.php?pid=3579 #include<iostream>#include<st ...

  8. HDU 3579——Hello Kiki

    好久没写什么数论,同余之类的东西了. 昨天第一次用了剩余定理解题,今天上百度搜了一下hdu中国剩余定理.于是就发现了这个题目. 题目的意思很简单.就是告诉你n个m[i],和n个a[i].表示一个数对m ...

  9. hdu 3579 Hello Kiki (中国剩余定理)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. 【Azure Developer】使用Postman获取Azure AD中注册应用程序的授权Token,及为Azure REST API设置Authorization

    Azure Active Directory (Azure AD) is Microsoft's cloud-based identity and access management service, ...

  2. 当Django设置DEBUG为False时,发现admin和html的静态资源文件加载失败的解决办法

    当Django设置DEBUG为False时,发现admin和html的静态资源文件加载失败,折腾一段时间终于找到解决办法: 1.先在setting文件增加BASE_DIR(项目的路径) BASE_DI ...

  3. 无限重置IDE过期时间插件 亲测可以使用

    相信破解过IDEA的小伙伴,都知道jetbrains-agent这个工具,没错,就是那个直接拖入到开发工具界面,一键搞定,so easy的破解工具!这个工具目前已经停止更新了,尽管还有很多小伙伴在使用 ...

  4. /etc/hosts文件

    这个文件告诉主机哪些域名对应哪些ip,哪些主机名对应哪些ip. 一般也三个域 网络ip地址 主机名或域名 主机名别名 两部分的时候 主机ip地址和主机名

  5. Lambda表达式你会用吗?

    函数式编程 在正式学习Lambda之前,我们先来了解一下什么是函数式编程 我们先看看什么是函数.函数是一种最基本的任务,一个大型程序就是一个顶层函数调用若干底层函数,这些被调用的函数又可以调用其他函数 ...

  6. ctfhub技能树—信息泄露—备份文件下载—vim缓存

    打开靶机 查看页面信息 在使用vim时会创建临时缓存文件,关闭vim时缓存文件则会被删除,当vim异常退出后,因为未处理缓存文件,导致可以通过缓存文件恢复原始文件内容 以 index.php 为例:第 ...

  7. Lnux:实验 Linux C 编程

    实验题目: 实验 3 Linux C 编程 实验目的和要求:   熟悉 Linux 操作系统环境 在 Linux 下编写.执行简单的 C 程序 用 C 语言写自己的 Linux 命令 实验过程: 认真 ...

  8. 绝对定位上下左右都为0 margin为auto为什么能居中

    老规矩,先来一段废话,我大学刚入门的时候觉得CSS很简单,记一记就会了,不就是盒模型嘛,现在想来觉得自己那时候真的很自以为是哈哈.但是随着工作沉淀,我明白了任何技术都有着它的深度和广度,正是因为不少人 ...

  9. 利用vbs隐藏dos窗口

    方法一: option explicitdim wshshellset wshshell=wscript.createobject("wscript.shell")wshshell ...

  10. SAP里会话结束方法(杀死进程)

    在SAP的ERP里,有很多方法可以结束一个会话,然而在不同情况下,需要使用的方法也不同.下面从先后顺序来简单说明:1.SM04:最常用的方法,在SM04点击工具栏的会话->结束会话,来关闭一个会 ...