P3980 [NOI2008]志愿者招募 (费用流)
题意:最多1000天 每天需要至少ai个工人施工 有10000种工人可以雇佣
每种工人可以工作si到ti天 雇佣一个的花费是ci 问怎样安排使得施工花费最少
思考:最直白的建模方式 就是每种工人可以和他能工作的天 连边
但是这样就引出了一个一对多的问题 一种工人对他所连的所有天 贡献是一样的
也就是说他流向和他连的天的 流量应该都是一样的 但是网络流显然是做不到这一点
于是我们重新思考 发现每种工人其实就是一种区间覆盖 那么我们考虑差分的思想
把每相邻两天连起来 表示这种工人在第i天工作了后 跑到第i+1天去工作了
因为每种工人最多工作到ti天 所以我们要考虑某种方式在ti+1天把si流进来的流量放出去 他不能对ti+1天有贡献
然后就不会了....
题解:把每一天当作点 今天向明天连一条 容量INF-ai 花费0的边
对于每种工人 从si天向ti+1天 连 容量为INF 花费为ci的边
s连1 容量INF花费0 n+1连t 容量INF 花费0
跑一遍最大流 因为一定有完成施工的方案 所以能满流 得到的最小花费就是答案
为什么每两天之间的容量是INF-ai 表示今天需要至少ai的流量从带权边补足到INF
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f; int n, m, cnt, mincost, s, t;
struct node {
int to, nex, val, cost;
}E[30005];
int head[1005];
int cur[1005];
int a[1005]; void addedge(int x, int y, int va, int cos) {
E[++cnt].to = y; E[cnt].nex = head[x]; head[x] = cnt; E[cnt].val = va; E[cnt].cost = cos;
E[++cnt].to = x; E[cnt].nex = head[y]; head[y] = cnt; E[cnt].val = 0; E[cnt].cost = -cos;
} int dis[1005], inque[1005], vis[1015];
bool spfa() {
for(int i = 1; i <= t; i++) dis[i] = INF, inque[i] = 0, cur[i] = head[i];
queue<int> que; que.push(s);
dis[s] = 0; inque[s] = 1; while(!que.empty()) {
int u = que.front(); que.pop();
inque[u] = 0; for(int i = head[u]; i; i = E[i].nex) {
int v = E[i].to;
if(E[i].val && dis[v] > dis[u] + E[i].cost) {
dis[v] = dis[u] + E[i].cost;
if(!inque[v]) {
inque[v] = 1;
que.push(v);
}
}
}
}
return dis[t] != INF;
} int dfs(int x, int flow) {
if(x == t) {
vis[t] = 1;
return flow;
} vis[x] = 1;
int used = 0, rflow = 0;
for(int i = cur[x]; i; i = E[i].nex) {
cur[x] = i;
int v = E[i].to;
if(E[i].val && dis[v] == dis[x] + E[i].cost && (!vis[v] || v == t)) {
if(rflow = dfs(v, min(E[i].val, flow - used))) {
used += rflow;
E[i].val -= rflow;
E[i ^ 1].val += rflow;
mincost += rflow * E[i].cost;
if(used == flow) break;
}
}
}
return used;
} void dinic() {
mincost = 0;
while(spfa()) {
vis[t] = 1;
while(vis[t]) {
memset(vis, 0, sizeof(int) * (t + 1));
dfs(s, INF);
}
}
} int main() {
cnt = 1;
scanf("%d%d", &n, &m);
s = n + 2; t = s + 1;
for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
for(int i = 1; i <= m; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
addedge(a, b + 1, INF, c);
}
for(int i = 1; i <= n; i++) addedge(i, i + 1, INF - a[i], 0);
addedge(s, 1, INF, 0); addedge(n + 1, t, INF, 0);
dinic();
printf("%d\n", mincost);
return 0;
}
P3980 [NOI2008]志愿者招募 (费用流)的更多相关文章
- P3980 [NOI2008]志愿者招募 费用流 (人有多大胆地有多大产
https://www.luogu.org/problemnew/show/P3980 感觉费用流比网络流的图更难想到,要更大胆.首先由于日期是连续的,所以图中的点是横向排列的. 这道题有点绕道走的意 ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- [BZOJ1061] [Noi2008] 志愿者招募 (费用流)
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...
- [NOI2008]志愿者招募 (费用流)
大意: $n$天, 第$i$天要$a_i$个志愿者. $m$种志愿者, 每种无限多, 第$i$种工作时间$[s_i,t_i]$花费$c_i$, 求最少花费. 源点$S$连第一天, 容量$INF$ 第$ ...
- Vijos1825 NOI2008 志愿者招募 费用流
Orz ByVoid大神的题解:https://www.byvoid.com/blog/noi-2008-employee/ 学习网络流建图的好题,不难想到线性规划的模型,不过利用模型的特殊性,结合网 ...
- 【洛谷】P3980 [NOI2008]志愿者招募
[洛谷]P3980 [NOI2008]志愿者招募 我居然现在才会用费用流解线性规划-- 当然这里解决的一类问题比较特殊 以式子作为点,变量作为边,然后要求就是变量在不同的式子里出现了两次,系数一次为+ ...
- 从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流)
从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流) 题面 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运 ...
- [NOI2008][bzoj1061] 志愿者招募 [费用流+巧妙的建图]
题面 传送门 思路 引入:网络流? 看到这道题,第一想法是用一个dp来完成决策 但是,显然这道题的数据并不允许我们进行dp,尤其是有10000种志愿者的情况下 那么我们就要想别的办法来解决: 贪心?这 ...
- luogu P3980 [NOI2008]志愿者招募
传送门 网络流又一神仙套路应用 首先考虑列不等式,设\(x_i\)为第i种人的个数,记\(b_{i,j}\)为第i种人第j天是否能工作,那么可以列出n个不等式,第j个为\(\sum_{i=1}^{m} ...
随机推荐
- 值得推荐的C#不同版本语言特性
C#语言在不断地版本升级中,为我们提供了很多新的语言特性.其中,有很多使用的语言特性,我觉得在实际开发中用起来很方便,能够简化我们的代码,增强可读性,提高开发效率. 小编不才,在这里给大家整理了一些实 ...
- #2020征文-开发板# 用鸿蒙开发AI应用(三)软件篇
目录: 前言 HarmonyOS 简介 DevEco Device Tool(windows下) 获取源码(切换到ubuntu) 烧录程序(切换回windows) 前言上一篇,我们在 Win10 上用 ...
- 关于vuex的数据不直接给data而要通过computed
# 为什么vuex的数据不直接给data而要通过computed计算 ## 疑惑 其实一直以来使用vue的状态管理vuex都有一个疑惑,文档中介绍,vue的状态数据`$store.state.xx`的 ...
- .net core 和 WPF 开发升讯威在线客服与营销系统:使用 WebSocket 实现访客端通信
本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ...
- python作业完成简单的文件操作
题目 请创建以学号命名的目录,在该目录中创建名称为file1.txt的文件,并将自己的个人信息(序号.姓名以及班级)等写入该文件:然后并读取文件中的内容到屏幕上:接着重新命名该文件为file2.txt ...
- (二)数据源处理2-xlrd操作excel
import xlrd3workbook = xlrd3.open_workbook('test_data.xlsx')sheet =workbook.sheet_by_name('Sheet1')p ...
- MySQL select 子查询的使用
### 子查询 >where 这个值是计算出来的 >本质:`在 where 语句中嵌套一个子查询语句` ```sql /*============== 子查询 ============== ...
- kubernets之pv以及pvc
一 持久卷以及持久卷声明的由来 由于不管是哪种卷,开发者都需要提前预知kubernets集群里面的存储类型,这样就在一定程度上违背了kubernets集群的设计理念,kubernets的设计理念是在由 ...
- Empire
Empire 内网渗透神器 一 基本渗透 安装 git clone https://github.com/BC-SECURITY/Empire/ ./setup/install.sh 启动 ./emp ...
- oracle ORA-00060死锁查询、表空间扩容
--查看被锁住的表 select b.owner,b.object_name,a.session_id,a.locked_mode from v$locked_object a,dba_objects ...