题面描述

Ratish is a young man who always dreams of being a hero. One day his friend Luffy was caught by Pirate Arlong. Ratish set off at once to Arlong's island. When he got there, he found the secret place where his friend was kept, but he could not go straight in. He saw a large door in front of him and two locks in the door. Beside the large door, he found a strange rock, on which there were some odd words. The sentences were encrypted. But that was easy for Ratish, an amateur cryptographer. After decrypting all the sentences, Ratish knew the following facts:

Behind the large door, there is a nesting prison, which consists of M floors. Each floor except the deepest one has a door leading to the next floor, and there are two locks in each of these doors. Ratish can pass through a door if he opens either of the two locks in it. There are 2N different types of locks in all. The same type of locks may appear in different doors, and a door may have two locks of the same type. There is only one key that can unlock one type of lock, so there are 2N keys for all the 2N types of locks. These 2N keys were divided into N pairs, and once one key in a pair is used, the other key will disappear and never show up again.

Later, Ratish found N pairs of keys under the rock and a piece of paper recording exactly what kinds of locks are in the M doors. But Ratish doesn't know which floor Luffy is held, so he has to open as many doors as possible. Can you help him to choose N keys to open the maximum number of doors?

题意

给你 n 对钥匙,每对若用了其中一把,另一把就不能用。有 m 扇门,每扇门可以由给定的两把钥匙中的任意一把打开,问最多能打开多少扇门。

思路

其实可以不用二分,但二分跑的快些。

二分答案,对于每对钥匙 \(a\) 和 \(b\),\(a\) 用了 \(b\) 就不能用(\(a \rightarrow \neg b\)),\(b\) 用了 \(a\) 就不能用(\(b \rightarrow \neg a\))。

对于每扇门的 \(a\) 和 \(b\),不用 \(a\) 打开就必须用 \(b\) 打开(\(\neg a \rightarrow b\)),不用 \(b\) 打开就必须用 \(a\) 打开(\(\neg b \rightarrow a\))。

所以建个图,跑个 2-SAT 就好啦

代码

/************************************************
*Author : lrj124
*Created Time : 2019.11.10.20:21
*Mail : 1584634848@qq.com
*Problem : poj2723
************************************************/
#include <algorithm>
#include <cstdio>
#include <vector>
#include <stack>
using namespace std;
const int maxn = 10000 + 10;
int n,m,low[maxn],dfn[maxn],scc[maxn],scccnt,ind;
pair<int,int> key[maxn],door[maxn];
vector<int> edge[maxn];
bool vis[maxn];
stack<int> s;
inline void tarjan(int now) {
dfn[now] = low[now] = ++ind;
vis[now] = true,s.push(now);
for (size_t i = 0;i < edge[now].size();i++) {
int to = edge[now][i];
if (!dfn[to]) {
tarjan(to);
low[now] = min(low[now],low[to]);
} else if (vis[to]) low[now] = min(low[now],dfn[to]);
}
if (dfn[now] == low[now]) {
scc[now] = ++scccnt;
for (;s.top() ^ now;vis[s.top()] = false,s.pop()) scc[s.top()] = scccnt;
vis[now] = false,s.pop();
}
}
inline bool check(int mid) {
ind = scccnt = 0;
for (int i = 1;i <= 4*n;i++) edge[i].clear(),low[i] = dfn[i] = 0;
for (int i = 1;i <= n;i++) {
edge[key[i].first].push_back(key[i].second+2*n);
edge[key[i].second].push_back(key[i].first+2*n);
}
for (int i = 1;i <= mid;i++) {
edge[door[i].first+2*n].push_back(door[i].second);
edge[door[i].second+2*n].push_back(door[i].first);
}
for (int i = 1;i <= 4*n;i++) if (!dfn[i]) tarjan(i);
for (int i = 1;i <= 2*n;i++) if (scc[i] == scc[i+2*n]) return false;
return true;
}
int main() {
// freopen("poj2723.in","r",stdin);
// freopen("poj2723.out","w",stdout);
for (;scanf("%d%d",&n,&m),n && m;) {
for (int i = 1,x,y;i <= n;i++) {
scanf("%d%d",&x,&y); x++,y++;
key[i] = make_pair(x,y);
}
for (int i = 1,x,y;i <= m;i++) {
scanf("%d%d",&x,&y); x++,y++;
door[i] = make_pair(x,y);
}
int l = 0,r = m,ans;
for (int mid;l <= r;check(mid = l+r>>1) ? l = mid+1,ans = mid : r = mid-1);
printf("%d\n",ans);
}
return 0;
}

【POJ2723】Get Luffy Out - 二分+2-SAT的更多相关文章

  1. hdu3715 Go Deeper[二分+2-SAT]/poj2723 Get Luffy Out[二分+2-SAT]

    这题转化一下题意就是给一堆形如$a_i + a_j \ne c\quad (a_i\in [0,1],c\in [0,2])$的限制,问从开头开始最多到哪条限制全是有解的. 那么,首先有可二分性,所以 ...

  2. POJ2723 Get Luffy Out解题报告tarjan+2-SAT+二分

    今天看到讲2-SAT比较好的blog,感觉微微的理解了2-SAT 传送门 参考: https://blog.csdn.net/leolin_/article/details/6680144 题意:你有 ...

  3. POJ2723 Get Luffy Out 【2-sat】

    题目 Ratish is a young man who always dreams of being a hero. One day his friend Luffy was caught by P ...

  4. poj 2723 Get Luffy Out 二分+2-sat

    题目链接 给n个钥匙对, 每个钥匙对里有两个钥匙, 并且只能选择一个. 有m扇门, 每个门上有两个锁, 只要打开其中一个就可以通往下一扇门. 问你最多可以打开多少个门. 对于每个钥匙对, 如果选择了其 ...

  5. HDU - 1816 Get Luffy Out *(二分 + 2-SAT)

    题目大意:有N串钥匙,M对锁.每串钥匙仅仅能选择当中一把.怎样选择,才干使开的锁达到最大(锁仅仅能按顺序一对一对开.仅仅要开了当中一个锁就可以) 解题思路:这题跟HDU - 3715 Go Deepe ...

  6. poj2723 2sat判断解+二分

    典型的2-sat问题,题意:有m个门,每个门上俩把锁,开启其中一把即可,现在给n对钥匙(所有 钥匙编号0123456...2n-1),每对钥匙只能用一把,要求尽可能开门多(按顺序,前max个). 关键 ...

  7. POJ 2723 Get Luffy Out(2-SAT+二分答案)

    Get Luffy Out Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8851   Accepted: 3441 Des ...

  8. Get Luffy Out (poj 2723 二分+2-SAT)

    Language: Default Get Luffy Out Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7969   ...

  9. PKU-2723 Get Luffy Out(2-SAT+二分)

    Get Luffy Out 题目链接 Ratish is a young man who always dreams of being a hero. One day his friend Luffy ...

随机推荐

  1. Flarum 的安装与配置

    Flarum 是一款非常棒的开源论坛程序,本鸽子的论坛 就是用 Flarum 搭建的.之前有人问过我 Flarum 如何搭建,所以下面讲一下 Flarum 的搭建过程. 前提 域名需要提前解析. 有一 ...

  2. Sharding-Proxy的基本功能使用

    Sharding-Proxy是一个分布式数据库中间件,定位为透明化的数据库代理端.作为开发人员可以完全把它当成数据库,而它具体的分片规则在Sharding-Proxy中配置.它的整体架构图如下: 在架 ...

  3. 设计模式:interpreter模式

    理解:可以广义的理解为创造一种语言,实现该语言的解释器,然后用创造的语言编写程序 对比:如xml就是一种语言,解析xml的代码就是解释器 例子: //目标:定义4中几种命令,使用C++解析 //如下: ...

  4. java opencsv解析csv文件

    记一次使用opencsv解析csv文件时碰到的坑 最近在开发过程中需要解析csv文件,公司用的解析工具是opencsv,在根据opencsv的官方文档去解析时发现csv文件中含有繁体字,使用其自带的C ...

  5. 1.pandas打开和读取文件

    最近在公司在弄数据分析相关的项目,数据分析就免不了要先对数据进行处理,也就自然避不开关于excel文档的初始化操作了. 一段时间之后,发现pandas更加符合我的项目要求,所以,将一些常规操作记录下来 ...

  6. Sts 授权直传阿里云 OSS-.net core实现

    前言 磁盘怎么又满了?赶紧 快 打电话给运维扩容扩容扩容!这个问题已经是我入职新公司两个月来,第 3 次听到了.经过一通了解,事情原来是这样的.虽然我们使用了阿里云的 OSS 对象存储服务,但是为了不 ...

  7. state实例

    States是SaltStack中的配置语言,在日常进行配置管理时需要编写大量的States文件. 比如我们需要安装一个包,然后管理一个配置文件,最后保证某个服务正常运行. 这里就需要我们编写一些st ...

  8. python线程,进程,队列和缓存

    一.线程 threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 创建线程的两种方式1.threading.Thread import threading def f1(arg): ...

  9. c产生随机数(含时间种子)

    有时候我们需要程序产生一个随机数. 可以用rand() 但是其实这个随机数是伪随机数,它是一个周期很长的一个值而已. 所以我们可以加入一个随机数种子srand(),这个可以取以当前时间为基准的一个值. ...

  10. 02_HTML03

    学于黑马和传智播客联合做的教学项目 感谢 黑马官网 传智播客官网 微信搜索"艺术行者",关注并回复关键词"软件测试"获取视频和教程资料! b站在线视频 HTML ...