本文地址:https://www.cnblogs.com/tujia/p/13862351.html

系列文章:

【0】TensorFlow光速入门-序

【1】TensorFlow光速入门-tensorflow开发基本流程

【2】TensorFlow光速入门-数据预处理(得到数据集)

【3】TensorFlow光速入门-训练及评估

【4】TensorFlow光速入门-保存模型及加载模型并使用

【5】TensorFlow光速入门-图片分类完整代码

【6】TensorFlow光速入门-python模型转换为tfjs模型并使用

【7】TensorFlow光速入门-总结

一、数据来源

数据来源可以是自己业务原有数据或下载的开源数据或爬虫捉取的第三方数据,需要训练怎样的模型的准备什么样的数据。

例如:图片分类就需要自己准备不同分类的图片,按分类命名文件夹(这样方便读取)

二、导入数据(省时间可以直接跳过,看第三步就好

1)准备数据

已经下载好,分类保存好图片,我们先要导入到开发环境里,如果你图片已经准备好,那就可以跳过这一步了

这是我要做的一个表非表的二分类模型的数据:

我把它打包为 wnw.zip,然后放在本地的web环境根目录下

2)导入数据

打开 jupyter 的终端

   

注:也可以用 jupyter 里的界面来操作创建目录或上传文件,不过解压还是得用终端。使用其他方法上传图片也行,条条道路通罗马,只要把数据上传到可读取目录里就行

三、数据预处理

下面以图片分类为例子,看一下怎么预处理数据

注:需要说明的是,不同模型需要的输入数据是不一样的,这里主要学习数据的读取和处理方法,其他模型自己举一反三就好

1)首先先导入需要用到的包

import pathlib
import random
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt

2)读取文件夹图片数据

data_path = '/tf/datasets/wnw'
all_image_paths = []
all_image_labels = []
label_names = []
data_root = pathlib.Path(data_path)
i = 0
for item in data_root.iterdir():
label_names.append(item.name)
for image in item.iterdir():
all_image_paths.append(str(image))
all_image_labels.append(i)
i = i + 1
print(label_names)
print(len(all_image_paths))
print(len(all_image_labels))

运行结果:

3)图片数据集

处理图片数据成tensor(张量)数据

def load_and_preprocess_image(path):
# 文件 转 tensor
image = tf.io.read_file(path)
# 普通 tensor 转 图片tensor,channels 为颜色通道,1表示灰图
image = tf.image.decode_jpeg(image, channels=1)
# 缩放图片尺寸为 100*100
image = tf.image.resize(image, [100, 100])
# 颜色的数值范围是0-255,所以 image/255,进一步将图片tensor数据数值范围缩到 0-1
image /= 255
return image
# 图片路径列表直接转数据集
path_ds = tf.data.Dataset.from_tensor_slices(all_image_paths)
# 把路径数据转成图片tensor数据
image_ds = path_ds.map(load_and_preprocess_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)

4)label 数据集

label_ds = tf.data.Dataset.from_tensor_slices(tf.cast(all_image_labels, tf.int64))

5)将图片数据集和标签数据集压缩打包一下

image_label_ds = tf.data.Dataset.zip((image_ds, label_ds))

6)打乱数据

image_count = len(all_image_paths)
ds = image_label_ds.shuffle(buffer_size=image_count)
ds = ds.repeat()
ds = ds.batch(32)
ds = ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
print(ds)

注:为了文章更易读,我省略了一些查看图片、数据验证的操作,详细教程可以看这里:https://tensorflow.google.cn/tutorials/load_data/images

重点 Api :

tf.io.read_file           https://tensorflow.google.cn/api_docs/python/tf/io/read_file

tf.image.decode_image             https://tensorflow.google.cn/api_docs/python/tf/io/decode_jpeg

tf.image.resize                           https://tensorflow.google.cn/api_docs/python/tf/image/resize

tf.data.Dataset.from_tensor_slices            https://tensorflow.google.cn/api_docs/python/tf/data/Dataset#from_tensor_slices

tf.data.Dataset.map              https://tensorflow.google.cn/api_docs/python/tf/data/Dataset#map

tf.data.Dataset.zip               https://tensorflow.google.cn/api_docs/python/tf/data/Dataset#zip

下一节,我们来说说,如果用这个准备好的数据集来训练及评估其准确性

【3】TensorFlow光速入门-训练及评估

本文链接:https://www.cnblogs.com/tujia/p/13862351.html


完。

【2】TensorFlow光速入门-数据预处理(得到数据集)的更多相关文章

  1. 【6】TensorFlow光速入门-python模型转换为tfjs模型并使用

    本文地址:https://www.cnblogs.com/tujia/p/13862365.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  2. 【0】TensorFlow光速入门-序

    本文地址:https://www.cnblogs.com/tujia/p/13863181.html 序言: 对于我这么一个技术渣渣来说,想学习TensorFlow机器学习,实在是太难了: 百度&qu ...

  3. 【1】TensorFlow光速入门-tensorflow开发基本流程

    本文地址:https://www.cnblogs.com/tujia/p/13862339.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  4. 【3】TensorFlow光速入门-训练及评估

    本文地址:https://www.cnblogs.com/tujia/p/13862357.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  5. 【4】TensorFlow光速入门-保存模型及加载模型并使用

    本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  6. 【5】TensorFlow光速入门-图片分类完整代码

    本文地址:https://www.cnblogs.com/tujia/p/13862364.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...

  7. 『TensorFlow』TFR数据预处理探究以及框架搭建

    一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...

  8. TensorFlow从1到2(三)数据预处理和卷积神经网络

    数据集及预处理 从这个例子开始,相当比例的代码都来自于官方新版文档的示例.开始的几个还好,但随后的程序都将需要大量的算力支持.Google Colab是一个非常棒的云端实验室,提供含有TPU/GPU支 ...

  9. 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理

    Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dat ...

随机推荐

  1. redis集群简介

    1.1        集群的概念 所谓的集群,就是通过添加服务器的数量,提供相同的服务,从而让服务器达到一个稳定.高效的状态. 1.1.1       使用redis集群的必要性 问题:我们已经部署好 ...

  2. 转载:python argparse用法总结

    https://www.jianshu.com/p/fef2d215b91d 1. argparse介绍 是python的一个命令行解析包,非常编写可读性非常好的程序 2. 基本用法 prog.py是 ...

  3. 浅析Kubernrtes服务类型(Service Types)

    先上图 在Kubernetes集群中,service通过标签选择器选着对应的pod,然后对请求进行转发,看个动画,能直接了当体会到便签选择器 pod,endpoints,service三者关系 1.举 ...

  4. training set, validation set, test set的区别

    training set: 用来训练模型 validation set : 用来做model selection test set : 用来评估所选出来的model的实际性能 我们知道,在做模型训练之 ...

  5. HarmonyOS 润和 HiSpark开发套件 免费领!

    让人期盼已久的HarmonyOS 2.0终于在9月10日正式上线啦! 这是一件让众多开发者关注的大事件! 相信不少开发者都已经迫不及待的想上手实操了, 为了满足大家的好奇心, 也希望能有更多开发者了解 ...

  6. Python装饰器实现带参数和不带参数

    1 def log(text=None): 2 3 if isinstance(text, str): 4 def decorator(func): 5 @functools.wraps(func) ...

  7. Oracle 数据库下赋予用户的执行存储过程和创建表权限

    grant create any table to username; grant create any procedure to username; grant execute any proced ...

  8. IPA的动态库注入+企业重签名过程

    [摘录]之前在进行iOS测试过程中由于要获取一定数据信息,因此需要对原本的安装包进行代码注入并且重新打包安装,因此就需要使用重签名策略,在此进行分享,希望大家可以使用其中的方法来运用到自身的项目中. ...

  9. “3D引擎和图形学技术点思路讲解”线上直播培训班报名开始啦(完全免费)

    大家好,我开了一个线上的直播课程培训班,完全免费,欢迎大家报名! 本课程重点教授"光线追踪"方面的实现思路. 我的相关经验 5年3D引擎开发经验 Wonder-WebGL 3D引擎 ...

  10. MeteoInfo脚本示例:读取FY3A AOD HDF文件

    FY3A卫星有AOD产品数据,HDF格式,这里示例用MeteoInfo脚本程序读取和显示该类数据. 脚本程序如下: #----------------------------------------- ...