前言

本篇文章收录于专辑:http://dwz.win/HjK,点击解锁更多数据结构与算法的知识。

你好,我是彤哥,一个每天爬二十六层楼还不忘读源码的硬核男人。

前面几节,我们一起学习了算法的复杂度如何分析,并从最坏、平均、最好以及不能使用最坏情况全方位无死角的剖析了算法的复杂度,在我们表示复杂度的时候,通常使用大O来表示。

但是,在其他书籍中,你可能还见过Θ、Ω、o、ω等符号。

那么,这些符号又是什么意思呢?

本节,我们就来解决这个问题。

读音

我们先来纠正一波读音:

  • O,/əʊ/,大Oh
  • o,/əʊ/,小oh
  • Θ,/ˈθiːtə/,theta
  • Ω,/oʊˈmeɡə/,大Omega
  • ω,/oʊˈmeɡə/,小omega

是不是跟老师教得不太一样^^

数学解释

Θ

Θ定义了一种精确的渐近行为(exact asymptotic behavior),怎么说呢?

用函数来表示:

对于f(n),存在正数n0、c1、c2,使得当 n>=n0 时,始终存在 0 <= c1*g(n) <= f(n) <= c2*g(n),则我们可以用 f(n)=Θ(g(n))表示。

用图来表示:

Θ同时定义了上界和下界,f(n)位于上界和下界之间,且包含等号。

比如说,f(n) = 2n^2+3n+1 = Θ(n^2),此时,g(n)就是用f(n)去掉低阶项和常数项得来的,因为肯定存在某个正数n0、c1、c2,使得 0 <= c1*n^2 <= 2n^2+3n+1 <= c2*n2,当然,你说g(n)是2*n2也没问题,所以,g(n)实际上满足这个条件的一组函数。

好了,如果Θ你能理解了,下面四个就好理解了。

O

O定义了算法的上界。

用函数来表示:

对于f(n),存在正数n0、c,使得当 n>=n0 时,始终存在 0 <= f(n) <= c*g(n),则我们可以用 f(n)=O(g(n))表示。

用图来表示:

O只定义上界,只要f(n)不大于c*g(n),就可以说 f(n)=O(g(n))。

比如说,对于插入排序,我们说它的时间复杂度是O(n^2),但是,如果用Θ来表示,则必须分成两条:

  1. 最坏的情况下,它的时间复杂度为Θ(n^2);
  2. 最好的情况下,它的时间复杂度为Θ(n)。

这里的n2只是g(n)这一组函数中最小的上界,当然,g(n)也可以等于n3。

不过,我们一般说复杂度都是指的最小的上界,比如,这里插入排序的时间复杂度如果说是O(n^3),从理论上来说,也没问题,只是不符合约定罢了。

插入排序最好的情况就是数组本身就是有序的。

o

o定义的也是算法的上界,不过它不包含等于,是一种不精确的上界,或者称作松上界(某些书籍翻译为非紧上界)。

用函数来表示:

对于f(n),存在正数n0、c,使得当 n>n0 时,始终存在 0 <= f(n) < c*g(n),则我们可以用 f(n)=o(g(n))表示。

用图来表示:

o表示仅仅是大O去掉等于的情况,其他行为与大O一模一样。

Ω

Ω定义了算法的下界,与O正好相反。

用函数来表示:

对于f(n),存在正数n0、c,使得当 n>=n0 时,始终存在 0 <= c*g(n) <= f(n),则我们可以用 f(n)=Ω(g(n))表示。

用图来表示:

Ω只定义下界,只要f(n)不小于c*g(n),就可以说 f(n)=Ω(g(n))。

比如,对于插入排序,我们可以说它的时间复杂度为Ω(n),不过,这通常没有什么意义,因为插入排序在最好的情况下很少,基本都是在最坏情况或者平均情况。

ω

ω同样定义的是下界,只不过不包含等于,是一种不精确的下界,或者称作松下界(某些书籍翻译为非紧下界)。

用函数来表示:

对于f(n),存在正数n0、c,使得当 n>n0 时,始终存在 0 <= c*g(n) < f(n),则我们可以用 f(n)=ω(g(n))表示。

用图来表示:

ω表示仅仅是大Ω去掉等于的情况,其他行为与大Ω一模一样。

通俗理解

符号 含义 通俗理解
Θ 精确的渐近行为 相当于“=”
O 上界 相当于“<=”
o 松上界 相当于“<”
Ω 下界 相当于“>=”
ω 松下界 相当于“>”

小结

为了帮助同学们快速查阅英文资料,彤哥特地把这几节涉及到的英语单词汇总了一下:

汉语 英文
复杂度 complexity
时间复杂度 time complexity
空间复杂度 space complexity
渐近分析 asymptotic analysis
最坏情况 the worst case
最好情况 the best case
平均情况 the average case
精确的渐近行为 exact asymptotic behavior
低阶项 low order terms
常数项(前置常数) leading constants
松上界 loose upper-bound

后记

本节,我们分别从读音、数学、通俗理解等三个方面阐述了Θ、O、o、Ω、ω的含义,并在最后给出了这几节涉及到的术语对应的英文,有了这些英文,你也可以快速地查阅这方面的资料。

不过,在我们平时与人交流的过程中,大家还是习惯于使用大O表示法,一来它表示最坏情况,最坏情况通常可以直接代表算法的复杂度,二来它比较好书写。

所以,我们只需要记住大O就可以了,只不过在别人提到Θ、Ω、ω我们知道是什么含义就可以了。

前面几节讲了这么多,其实,还是只涉及了很简单的算法复杂度。

那么,常见的算法复杂度有哪些呢?

下一节,我们接着聊。

关注公号主“彤哥读源码”,解锁更多源码、基础、架构知识。

O、Θ、Ω、o、ω,别再傻傻分不清了!的更多相关文章

  1. 【jvm】08-垃圾回收器那么多傻傻分不清?

    [jvm]08-垃圾回收器那么多傻傻分不清? 欢迎关注b站账号/公众号[六边形战士夏宁],一个要把各项指标拉满的男人.该文章已在github目录收录. 屏幕前的大帅比和大漂亮如果有帮助到你的话请顺手点 ...

  2. MVP MVC MVVM 傻傻分不清

    最近MVC (Model-View-Controller) 和MVVM (Model-View-ViewModel) 在微软圈成为显学,ASP.NET MVC 和WPF 的Prism (MVVM Fr ...

  3. [转帖]十分钟快速理解DPI和PPI,不再傻傻分不清!

    十分钟快速理解DPI和PPI,不再傻傻分不清! https://baijiahao.baidu.com/s?id=1605834796518990333&wfr=spider&for= ...

  4. OCA,OCP,OCM傻傻分不清?

    可能大家知道OCA.OCP.OCM的关系是一个比一个难考,一个比一个含金量高,但是你知道具体的考试科目.考试方式.就业形势区别吗?不知道的话这篇通俗易懂的文章会让你一目了然. 区别一:含金量 ■OCA ...

  5. 学点经济学:M0、M1、M2、M3,傻傻分不清?(转载)

    来源:http://t.10jqka.com.cn/pid_97006727.shtml 学点经济学:M0.M1.M2.M3,傻傻分不清? 25,508人浏览 2018-08-03 11:06 常听人 ...

  6. ASCII、Unicode、UTF-8、UTF-8(without BOM)、UTF-16、UTF-32傻傻分不清

    ASCII.Unicode.UTF-8.UTF-8(without BOM).UTF-16.UTF-32傻傻分不清 目录 ASCII.Unicode.UTF-8.UTF-8(without BOM). ...

  7. session cookie傻傻分不清

    做了这么多年测试,还是分不清什么是cookie,什么是session?很正常,很多初级开发工程师可能到现在都搞不清什么是session,cookie相对来说会简单很多. 下面这篇文章希望能够帮助大家分 ...

  8. 【华为敏捷/DevOps实践】7. 敏捷,DevOps,傻傻不分清楚【华为云技术分享】

    文:姚冬(华为云DevCloud首席技术布道师,资深DevOps与精益/敏捷专家,金融解决方案技术Leader,中国DevOpsDays社区核心组织者) 前言 敏捷是什么?DevOps是什么?两者有什 ...

  9. JS魔法堂:属性、特性,傻傻分不清楚

    一.前言 或许你和我一样都曾经被下面的代码所困扰 var el = document.getElementById('dummy'); el.hello = "test"; con ...

  10. 傻傻分不清之 Cookie、Session、Token、JWT

    傻傻分不清之 Cookie.Session.Token.JWT 什么是认证(Authentication) 通俗地讲就是验证当前用户的身份,证明“你是你自己”(比如:你每天上下班打卡,都需要通过指纹打 ...

随机推荐

  1. Shell 脚本学习(1)

    一 Shell概览 1. 自动化批量系统初始化程序(update, 软件安装,时区设置,安全策略,...) 2. 自动化批量软件部署程序(LAMP,LNMP,Tomcat,LVS,Nginx) 3. ...

  2. Java项目开启远程调试(tomcat、springboot)

    当我们运行一个项目的时候,一般都是在本地进行debug.但是如果是一个分布式的微服务,这时候我们选择远程debug是我们开发的利器. 环境apache-tomcat-8.5.16 Linux 如何启用 ...

  3. SpringCloud之zuul

  4. 关于gulp复制文件时把整个目录结构都复制的问题解决

    有这么个场景,在开发时分模块开发,但是发布时不一定将按模块分布,比如,为了便于开发,图片是按照模块存放的,但是发布时只是放在images文件夹下,此时就需要用到本文中提到的插件gulp-flatten ...

  5. 揭秘JAVA JVM内幕

    在之前的文章 一步步解析java执行内幕 中,比较详细分析了java代码是如何一步一步在jvm中执行的,然而设计的的jvm核心技术点,并未做深入分析,本篇文章将重点分析jvm,涉及到的内容包括jvm内 ...

  6. MySQL 树形索引结构 B树 B+树

    MySQL 树形索引结构 B树 B+树   如何评估适合索引的数据结构 索引的本质是一种数据结构 内存只是临时存储,容量有限且容易丢失数据.因此我们需要将数据放在硬盘上. 在硬盘上进行查询时也就产生了 ...

  7. JAVA基础笔记15-16-17-18

    十五.今日内容介绍 1.Object 2.String 3.StringBuilder =第一节课开始======================= 01API概念 * A:API(Applicati ...

  8. 如何让元素支持 height:100%效果

    如何让元素支持 height:100%效果? 有两种方法.(1) 设定显式的高度值. 这个没什么好说的,例如,设置 height:600px,或者可以生效的百分比值高度.例如,我们比较常见的:html ...

  9. 05 drf源码剖析之认证

    05 drf源码剖析之认证 目录 05 drf源码剖析之认证 1. 认证简述 2. 认证的使用 3. 源码剖析 4. 总结 1. 认证简述 当我们通过Web浏览器与API进行交互时,我们可以登录,然后 ...

  10. 数据可视化之PowerQuery篇(二十)如何计算在职员工数量?

    https://zhuanlan.zhihu.com/p/128652582 ​经常碰到的一类问题是,如何根据起止日期来计算某个时间点的数量,比如: 已知合同的生效日期和到期日期,特定日期的有效合同有 ...