O、Θ、Ω、o、ω,别再傻傻分不清了!

前言
本篇文章收录于专辑:http://dwz.win/HjK,点击解锁更多数据结构与算法的知识。
你好,我是彤哥,一个每天爬二十六层楼还不忘读源码的硬核男人。
前面几节,我们一起学习了算法的复杂度如何分析,并从最坏、平均、最好以及不能使用最坏情况全方位无死角的剖析了算法的复杂度,在我们表示复杂度的时候,通常使用大O来表示。
但是,在其他书籍中,你可能还见过Θ、Ω、o、ω等符号。
那么,这些符号又是什么意思呢?
本节,我们就来解决这个问题。
读音
我们先来纠正一波读音:
- O,/əʊ/,大Oh
- o,/əʊ/,小oh
- Θ,/ˈθiːtə/,theta
- Ω,/oʊˈmeɡə/,大Omega
- ω,/oʊˈmeɡə/,小omega
是不是跟老师教得不太一样^^
数学解释
Θ
Θ定义了一种精确的渐近行为(exact asymptotic behavior),怎么说呢?
用函数来表示:
对于f(n),存在正数n0、c1、c2,使得当 n>=n0 时,始终存在 0 <= c1*g(n) <= f(n) <= c2*g(n),则我们可以用 f(n)=Θ(g(n))表示。
用图来表示:

Θ同时定义了上界和下界,f(n)位于上界和下界之间,且包含等号。
比如说,f(n) = 2n^2+3n+1 = Θ(n^2),此时,g(n)就是用f(n)去掉低阶项和常数项得来的,因为肯定存在某个正数n0、c1、c2,使得 0 <= c1*n^2 <= 2n^2+3n+1 <= c2*n2,当然,你说g(n)是2*n2也没问题,所以,g(n)实际上满足这个条件的一组函数。
好了,如果Θ你能理解了,下面四个就好理解了。
O
O定义了算法的上界。
用函数来表示:
对于f(n),存在正数n0、c,使得当 n>=n0 时,始终存在 0 <= f(n) <= c*g(n),则我们可以用 f(n)=O(g(n))表示。
用图来表示:

O只定义上界,只要f(n)不大于c*g(n),就可以说 f(n)=O(g(n))。
比如说,对于插入排序,我们说它的时间复杂度是O(n^2),但是,如果用Θ来表示,则必须分成两条:
- 最坏的情况下,它的时间复杂度为Θ(n^2);
- 最好的情况下,它的时间复杂度为Θ(n)。
这里的n2只是g(n)这一组函数中最小的上界,当然,g(n)也可以等于n3。
不过,我们一般说复杂度都是指的最小的上界,比如,这里插入排序的时间复杂度如果说是O(n^3),从理论上来说,也没问题,只是不符合约定罢了。
插入排序最好的情况就是数组本身就是有序的。
o
o定义的也是算法的上界,不过它不包含等于,是一种不精确的上界,或者称作松上界(某些书籍翻译为非紧上界)。
用函数来表示:
对于f(n),存在正数n0、c,使得当 n>n0 时,始终存在 0 <= f(n) < c*g(n),则我们可以用 f(n)=o(g(n))表示。
用图来表示:

o表示仅仅是大O去掉等于的情况,其他行为与大O一模一样。
Ω
Ω定义了算法的下界,与O正好相反。
用函数来表示:
对于f(n),存在正数n0、c,使得当 n>=n0 时,始终存在 0 <= c*g(n) <= f(n),则我们可以用 f(n)=Ω(g(n))表示。
用图来表示:

Ω只定义下界,只要f(n)不小于c*g(n),就可以说 f(n)=Ω(g(n))。
比如,对于插入排序,我们可以说它的时间复杂度为Ω(n),不过,这通常没有什么意义,因为插入排序在最好的情况下很少,基本都是在最坏情况或者平均情况。
ω
ω同样定义的是下界,只不过不包含等于,是一种不精确的下界,或者称作松下界(某些书籍翻译为非紧下界)。
用函数来表示:
对于f(n),存在正数n0、c,使得当 n>n0 时,始终存在 0 <= c*g(n) < f(n),则我们可以用 f(n)=ω(g(n))表示。
用图来表示:

ω表示仅仅是大Ω去掉等于的情况,其他行为与大Ω一模一样。
通俗理解
| 符号 | 含义 | 通俗理解 |
|---|---|---|
| Θ | 精确的渐近行为 | 相当于“=” |
| O | 上界 | 相当于“<=” |
| o | 松上界 | 相当于“<” |
| Ω | 下界 | 相当于“>=” |
| ω | 松下界 | 相当于“>” |
小结
为了帮助同学们快速查阅英文资料,彤哥特地把这几节涉及到的英语单词汇总了一下:
| 汉语 | 英文 |
|---|---|
| 复杂度 | complexity |
| 时间复杂度 | time complexity |
| 空间复杂度 | space complexity |
| 渐近分析 | asymptotic analysis |
| 最坏情况 | the worst case |
| 最好情况 | the best case |
| 平均情况 | the average case |
| 精确的渐近行为 | exact asymptotic behavior |
| 低阶项 | low order terms |
| 常数项(前置常数) | leading constants |
| 松上界 | loose upper-bound |
后记
本节,我们分别从读音、数学、通俗理解等三个方面阐述了Θ、O、o、Ω、ω的含义,并在最后给出了这几节涉及到的术语对应的英文,有了这些英文,你也可以快速地查阅这方面的资料。
不过,在我们平时与人交流的过程中,大家还是习惯于使用大O表示法,一来它表示最坏情况,最坏情况通常可以直接代表算法的复杂度,二来它比较好书写。
所以,我们只需要记住大O就可以了,只不过在别人提到Θ、Ω、ω我们知道是什么含义就可以了。
前面几节讲了这么多,其实,还是只涉及了很简单的算法复杂度。
那么,常见的算法复杂度有哪些呢?
下一节,我们接着聊。
关注公号主“彤哥读源码”,解锁更多源码、基础、架构知识。
O、Θ、Ω、o、ω,别再傻傻分不清了!的更多相关文章
- 【jvm】08-垃圾回收器那么多傻傻分不清?
[jvm]08-垃圾回收器那么多傻傻分不清? 欢迎关注b站账号/公众号[六边形战士夏宁],一个要把各项指标拉满的男人.该文章已在github目录收录. 屏幕前的大帅比和大漂亮如果有帮助到你的话请顺手点 ...
- MVP MVC MVVM 傻傻分不清
最近MVC (Model-View-Controller) 和MVVM (Model-View-ViewModel) 在微软圈成为显学,ASP.NET MVC 和WPF 的Prism (MVVM Fr ...
- [转帖]十分钟快速理解DPI和PPI,不再傻傻分不清!
十分钟快速理解DPI和PPI,不再傻傻分不清! https://baijiahao.baidu.com/s?id=1605834796518990333&wfr=spider&for= ...
- OCA,OCP,OCM傻傻分不清?
可能大家知道OCA.OCP.OCM的关系是一个比一个难考,一个比一个含金量高,但是你知道具体的考试科目.考试方式.就业形势区别吗?不知道的话这篇通俗易懂的文章会让你一目了然. 区别一:含金量 ■OCA ...
- 学点经济学:M0、M1、M2、M3,傻傻分不清?(转载)
来源:http://t.10jqka.com.cn/pid_97006727.shtml 学点经济学:M0.M1.M2.M3,傻傻分不清? 25,508人浏览 2018-08-03 11:06 常听人 ...
- ASCII、Unicode、UTF-8、UTF-8(without BOM)、UTF-16、UTF-32傻傻分不清
ASCII.Unicode.UTF-8.UTF-8(without BOM).UTF-16.UTF-32傻傻分不清 目录 ASCII.Unicode.UTF-8.UTF-8(without BOM). ...
- session cookie傻傻分不清
做了这么多年测试,还是分不清什么是cookie,什么是session?很正常,很多初级开发工程师可能到现在都搞不清什么是session,cookie相对来说会简单很多. 下面这篇文章希望能够帮助大家分 ...
- 【华为敏捷/DevOps实践】7. 敏捷,DevOps,傻傻不分清楚【华为云技术分享】
文:姚冬(华为云DevCloud首席技术布道师,资深DevOps与精益/敏捷专家,金融解决方案技术Leader,中国DevOpsDays社区核心组织者) 前言 敏捷是什么?DevOps是什么?两者有什 ...
- JS魔法堂:属性、特性,傻傻分不清楚
一.前言 或许你和我一样都曾经被下面的代码所困扰 var el = document.getElementById('dummy'); el.hello = "test"; con ...
- 傻傻分不清之 Cookie、Session、Token、JWT
傻傻分不清之 Cookie.Session.Token.JWT 什么是认证(Authentication) 通俗地讲就是验证当前用户的身份,证明“你是你自己”(比如:你每天上下班打卡,都需要通过指纹打 ...
随机推荐
- Shell 脚本学习(1)
一 Shell概览 1. 自动化批量系统初始化程序(update, 软件安装,时区设置,安全策略,...) 2. 自动化批量软件部署程序(LAMP,LNMP,Tomcat,LVS,Nginx) 3. ...
- Java项目开启远程调试(tomcat、springboot)
当我们运行一个项目的时候,一般都是在本地进行debug.但是如果是一个分布式的微服务,这时候我们选择远程debug是我们开发的利器. 环境apache-tomcat-8.5.16 Linux 如何启用 ...
- SpringCloud之zuul
- 关于gulp复制文件时把整个目录结构都复制的问题解决
有这么个场景,在开发时分模块开发,但是发布时不一定将按模块分布,比如,为了便于开发,图片是按照模块存放的,但是发布时只是放在images文件夹下,此时就需要用到本文中提到的插件gulp-flatten ...
- 揭秘JAVA JVM内幕
在之前的文章 一步步解析java执行内幕 中,比较详细分析了java代码是如何一步一步在jvm中执行的,然而设计的的jvm核心技术点,并未做深入分析,本篇文章将重点分析jvm,涉及到的内容包括jvm内 ...
- MySQL 树形索引结构 B树 B+树
MySQL 树形索引结构 B树 B+树 如何评估适合索引的数据结构 索引的本质是一种数据结构 内存只是临时存储,容量有限且容易丢失数据.因此我们需要将数据放在硬盘上. 在硬盘上进行查询时也就产生了 ...
- JAVA基础笔记15-16-17-18
十五.今日内容介绍 1.Object 2.String 3.StringBuilder =第一节课开始======================= 01API概念 * A:API(Applicati ...
- 如何让元素支持 height:100%效果
如何让元素支持 height:100%效果? 有两种方法.(1) 设定显式的高度值. 这个没什么好说的,例如,设置 height:600px,或者可以生效的百分比值高度.例如,我们比较常见的:html ...
- 05 drf源码剖析之认证
05 drf源码剖析之认证 目录 05 drf源码剖析之认证 1. 认证简述 2. 认证的使用 3. 源码剖析 4. 总结 1. 认证简述 当我们通过Web浏览器与API进行交互时,我们可以登录,然后 ...
- 数据可视化之PowerQuery篇(二十)如何计算在职员工数量?
https://zhuanlan.zhihu.com/p/128652582 经常碰到的一类问题是,如何根据起止日期来计算某个时间点的数量,比如: 已知合同的生效日期和到期日期,特定日期的有效合同有 ...
