python 的时间复杂度
Python内置方法的时间复杂度
本文翻译自Python Wiki
本文基于GPL v2协议,转载请保留此协议。
本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big
O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的
CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。
本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。
列表(list
)
以完全随机的列表考虑平均情况。
列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque
(双向队列)
操作 | 平均情况 | 最坏情况 |
复制 | O(n) | O(n) |
append[注1] | O(1) | O(1) |
插入 | O(n) | O(n) |
取元素 | O(1) | O(1) |
更改元素 | O(1) | O(1) |
删除元素 | O(n) | O(n) |
遍历 | O(n) | O(n) |
取切片 | O(k) | O(k) |
删除切片 | O(n) | O(n) |
更改切片 | O(k+n) | O(k+n) |
extend[注1] | O(k) | O(k) |
排序 | O(n log n) | O(n log n) |
列表乘法 | O(nk) | O(nk) |
x in s | O(n) | |
min(s), max(s) | O(n) | |
计算长度 | O(1) | O(1) |
双向队列(collections.deque
)
deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays
rather than objects, for greater
efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。
操作 | 平均情况 | 最坏情况 |
复制 | O(n) | O(n) |
append | O(1) | O(1) |
appendleft | O(1) | O(1) |
pop | O(1) | O(1) |
popleft | O(1) | O(1) |
extend | O(k) | O(k) |
extendleft | O(k) | O(k) |
rotate | O(k) | O(k) |
remove | O(n) | O(n) |
集合(set)
未列出的操作可参考 dict —— 二者的实现非常相似。
操作 | 平均情况 | 最坏情况 |
x in s | O(1) | O(n) |
并集 s|t | O(len(s)+len(t)) | |
交集 s&t | O(min(len(s), len(t)) | O(len(s) * len(t)) |
差集 s-t | O(len(s)) | |
s.difference_update(t) | O(len(t)) | |
对称差集 s^t | O(len(s)) | O(len(s) * len(t)) |
s.symmetric_difference_update(t) | O(len(t)) | O(len(t) * len(s)) |
由源码得知,求差集(s-t
,或s.difference(t)
)运算与更新为差集(s.difference_uptate(t)
)运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。
集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。
字典(dict)
下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。
小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。
操作 | 平均情况 | 最坏情况 |
复制[注2] | O(n) | O(n) |
取元素 | O(1) | O(n) |
更改元素[注1] | O(1) | O(n) |
删除元素 | O(1) | O(n) |
遍历[注2] | O(n) | O(n) |
python 的时间复杂度的更多相关文章
- Python(算法)-时间复杂度和空间复杂度
时间复杂度 算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用“O”表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况 时间复杂度是用来估计算法 ...
- Search Insert Position——二分法
Given a sorted array and a target value, return the index if the target is found. If not, return the ...
- Python内置方法的时间复杂度(转)
原文:http://www.orangecube.net/python-time-complexity 本文翻译自Python Wiki本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Pyt ...
- python 下的数据结构与算法---3:python内建数据结构的方法及其时间复杂度
目录 一:python内部数据类型分类 二:各数据结构 一:python内部数据类型分类 这里有个很重要的东西要先提醒注意一下:原子性数据类型和非原子性数据类型的区别 Python内部数据从某种形式上 ...
- python实现排序算法 时间复杂度、稳定性分析 冒泡排序、选择排序、插入排序、希尔排序
说到排序算法,就不得不提时间复杂度和稳定性! 其实一直对稳定性不是很理解,今天研究python实现排序算法的时候突然有了新的体会,一定要记录下来 稳定性: 稳定性指的是 当排序碰到两个相等数的时候,他 ...
- Python内置方法的时间复杂度
转载自:http://www.orangecube.NET/Python-time-complexity 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧"," ...
- python数据结构与算法第三天【时间复杂度计算方法】
最优时间复杂度(不可靠) 最坏时间复杂度(保证) 平均时间复杂度(平均状况) 不同语句的时间复杂度: (1)顺序语句:使用加法 (2)循环语句:使用乘法 (3)分支语句:使用坏时间复杂度 例如:如下代 ...
- python数据结构与算法学习自修第二天【时间复杂度与大O表示法】
#!/usr/bin/env python #! _*_ coding:UTF-8 _*_ from Queue import Queue import time que = Queue() time ...
- Python开发【算法】:斐波那契数列两种时间复杂度
斐波那契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, ...
随机推荐
- 捕获海康威视IPCamera图像,转成OpenCV能够处理的图像(一)
海康威视IPCamera图像捕获 捕获海康威视IPCamera图像,转成OpenCV能够处理的IplImage图像(一) 捕获海康威视IPCamera图像.转成OpenCV能够处理的IplImage图 ...
- poj3177 Redundant Paths 边双连通分量
给一个无向图,问至少加入多少条边能够使图变成双连通图(随意两点之间至少有两条不同的路(边不同)). 图中的双连通分量不用管,所以缩点之后建新的无向无环图. 这样,题目问题等效于,把新图中度数为1的点相 ...
- test_login
import unittest,requestsimport ddtfrom BeautifulReport import BeautifulReport as bffrom urllib impor ...
- 转载:Linux下执行SVN命令时提示错误:Valid UTF-8 data
在Linux下执行svn add *时出现如下错误: svn: Valid UTF-8 data(hex: 4b)followed by invalid UTF-8 sequence(hex: ...
- 动态创建 Log4net 实例
动态创建log4net 实例 根据业务类型,动态的创建日志实例,将日志写到不同目录.常见的配置文件中统一配置,不能满足需求. 引用log4net nuget安装命令: Install-Package ...
- golang使用sqlite
安装问题 在import sqlite的时候,golang build 出现以下错误, exec: "gcc": executable file not found in %PAT ...
- 在云服务器上部署node.js服务器
本文档介绍腾讯云·万象优图服务端nodejs的部署和集成,搭建一个nodejs+nginx为基础,对web端或者移动端提供http签名接口服务的例子程序.注意:本文档只是简单的示例,展示了服务端为终端 ...
- [J2EE基础]初识JSP和Servlet
近期须要用到J2EE,就開始学习与J2EE相关的知识了. JSP是一种Javaserver端技术,它用于在网页上显示动态内容. Tomcat相关知识 JSP的运行过程 JSP的页面构成元素 JSP的凝 ...
- windows server 2008 桌面图标
1.开始-->"搜索"-->"icon"-->"显示桌面通用图标"
- Atitit.png 图片不能显示 php环境下
Atitit.png 图片不能显示 php环境下 1.1. 不能显示png 下载png 检查使用bcompare与正常png对比.. 多了bom头 , "\xEF\xBB\xBF" ...