python 的时间复杂度
Python内置方法的时间复杂度
本文翻译自Python Wiki
本文基于GPL v2协议,转载请保留此协议。
本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big
O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的
CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。
本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。
列表(list)
以完全随机的列表考虑平均情况。
列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)
| 操作 | 平均情况 | 最坏情况 |
| 复制 | O(n) | O(n) |
| append[注1] | O(1) | O(1) |
| 插入 | O(n) | O(n) |
| 取元素 | O(1) | O(1) |
| 更改元素 | O(1) | O(1) |
| 删除元素 | O(n) | O(n) |
| 遍历 | O(n) | O(n) |
| 取切片 | O(k) | O(k) |
| 删除切片 | O(n) | O(n) |
| 更改切片 | O(k+n) | O(k+n) |
| extend[注1] | O(k) | O(k) |
| 排序 | O(n log n) | O(n log n) |
| 列表乘法 | O(nk) | O(nk) |
| x in s | O(n) | |
| min(s), max(s) | O(n) | |
| 计算长度 | O(1) | O(1) |
双向队列(collections.deque)
deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays
rather than objects, for greater
efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。
| 操作 | 平均情况 | 最坏情况 |
| 复制 | O(n) | O(n) |
| append | O(1) | O(1) |
| appendleft | O(1) | O(1) |
| pop | O(1) | O(1) |
| popleft | O(1) | O(1) |
| extend | O(k) | O(k) |
| extendleft | O(k) | O(k) |
| rotate | O(k) | O(k) |
| remove | O(n) | O(n) |
集合(set)
未列出的操作可参考 dict —— 二者的实现非常相似。
| 操作 | 平均情况 | 最坏情况 |
| x in s | O(1) | O(n) |
| 并集 s|t | O(len(s)+len(t)) | |
| 交集 s&t | O(min(len(s), len(t)) | O(len(s) * len(t)) |
| 差集 s-t | O(len(s)) | |
| s.difference_update(t) | O(len(t)) | |
| 对称差集 s^t | O(len(s)) | O(len(s) * len(t)) |
| s.symmetric_difference_update(t) | O(len(t)) | O(len(t) * len(s)) |
由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。
集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。
字典(dict)
下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。
小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。
| 操作 | 平均情况 | 最坏情况 |
| 复制[注2] | O(n) | O(n) |
| 取元素 | O(1) | O(n) |
| 更改元素[注1] | O(1) | O(n) |
| 删除元素 | O(1) | O(n) |
| 遍历[注2] | O(n) | O(n) |
python 的时间复杂度的更多相关文章
- Python(算法)-时间复杂度和空间复杂度
时间复杂度 算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用“O”表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况 时间复杂度是用来估计算法 ...
- Search Insert Position——二分法
Given a sorted array and a target value, return the index if the target is found. If not, return the ...
- Python内置方法的时间复杂度(转)
原文:http://www.orangecube.net/python-time-complexity 本文翻译自Python Wiki本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Pyt ...
- python 下的数据结构与算法---3:python内建数据结构的方法及其时间复杂度
目录 一:python内部数据类型分类 二:各数据结构 一:python内部数据类型分类 这里有个很重要的东西要先提醒注意一下:原子性数据类型和非原子性数据类型的区别 Python内部数据从某种形式上 ...
- python实现排序算法 时间复杂度、稳定性分析 冒泡排序、选择排序、插入排序、希尔排序
说到排序算法,就不得不提时间复杂度和稳定性! 其实一直对稳定性不是很理解,今天研究python实现排序算法的时候突然有了新的体会,一定要记录下来 稳定性: 稳定性指的是 当排序碰到两个相等数的时候,他 ...
- Python内置方法的时间复杂度
转载自:http://www.orangecube.NET/Python-time-complexity 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧"," ...
- python数据结构与算法第三天【时间复杂度计算方法】
最优时间复杂度(不可靠) 最坏时间复杂度(保证) 平均时间复杂度(平均状况) 不同语句的时间复杂度: (1)顺序语句:使用加法 (2)循环语句:使用乘法 (3)分支语句:使用坏时间复杂度 例如:如下代 ...
- python数据结构与算法学习自修第二天【时间复杂度与大O表示法】
#!/usr/bin/env python #! _*_ coding:UTF-8 _*_ from Queue import Queue import time que = Queue() time ...
- Python开发【算法】:斐波那契数列两种时间复杂度
斐波那契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, ...
随机推荐
- 08-hibernate注解-多对多单向外键关联
多对多单向外键 1,学生和教师构成多对多的关联关系 2,其中一个多方持有另一个多方的集合对象(学生持有教室的集合) 3,通过注解@JoinTable,创建中间表(作为多对多的载体,用来确定学生和教师的 ...
- MySQL数据库的查询缓冲机制
MySQL数据库的查询缓冲机制 2011-08-10 11:07 佚名 火魔网 字号:T | T 使用查询缓冲机制,可以极大地提高MySQL数据库查询的效率,节省查询所用的时间.那么查询缓冲机制是怎样 ...
- 用MyEclipse10.0远程连接Mysql数据库服务器
说明:本文档所有的操作均在满足以下条件的情况下操作, A.远程Linux服务器已经安装好MySQL数据库 B.本地电脑可以ping通远程服务器 C.已经成功安装了Myeclipse 一.下载mysql ...
- ConfigurationManager读取dll的配置文件
ConfigurationManager读取dll的配置文件 最近一个项目,需要发布dll给第三方使用,其中需要一些配置参数. 我们知道.NET的exe工程是自带的App.config文件的,编译之后 ...
- (一)Solr——简介和安装配置
1. solr简介 1.1 Solr是什么 Solr是apache的顶级开源项目,它是使用java开发 ,基于lucene的全文检索服务器. Solr和lucene的版本是同步更新的,最新的版本是7. ...
- PHP-客户端的IP地址伪造、CDN、反向代理、获取的那些事儿
外界流传的JAVA/PHP服务器端获取客户端IP都是这么取的: 伪代码: 1)ip = request.getHeader("X-FORWARDED-FOR") 可伪造,参 ...
- 带有key参数的函数filter,map,max,min
内置函数———filter def is_not_empty(s): return s and len(s.strip()) > 0 filter(is_not_empty, ['test', ...
- SSDB(网络LevelDB)-- 实际遇到的问题
简介 SSDB -- 支持网络的LevelDB 站点:https://github.com/ideawu/ssdb 我实际使用了SSDB支持网络+持久化特性,完成了一个集群 1.句柄数 ulimit ...
- ubuntu12.04打开某一个已安装的软件的方法
1.快捷键win+A,里面显示已安装的软件 2.打开左上角的dash home,即ubuntu标志图,输入想要打开的软件 还有其它方法,探索中... .
- [na][win]系统优化工具dism++
系统优化工具, 确实能将c盘扩大个2-3g. 主要是删除日志 优化系统等功能. https://www.chuyu.me/