题意:求两点之间最短路的数目加上比最短路长度大1的路径数目

分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加。

求解次短路的过程也是基于Dijkstra的思想。算法中用一个二维数组d[u][tag](tag=0代表最短路,1代表次短路)来记录最短路和次短路的长度,cnt[u][tag]记录二者的数目。所以每个点都有两个访问状态,一个是最短路已经确定,另一个是次短路已经确定,所以vis[u][tag]数组也是二维的。

每次维护邻接点的状态时,有四种可能情况:

  1.最短路长度需要更新。此时还需判断次短路是否需要更新,若最短路不存在,则不用更新;若最短路存在,则用最短路覆盖次短路。

  2.最短路数目需要更新。传递过来的路径长度与当前最短路相等,那么数量要加上去。

  3.次短路长度需要更新。

  4.次短路数目需要更新。

且算法可以用优先队列改善效率。

#include<iostream>
#include<stdio.h>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
typedef int LL;
const int maxn =1e3+,maxm = 2e4+;
const LL INF =0x3f3f3f3f;
LL dis[maxn][]; //最短路和次短路长度
struct Edge{
int to,next;
LL val;
};
struct Node{
int u,tag;
bool operator <(const Node &rhs) const {return dis[u][tag]>dis[rhs.u][rhs.tag];}
}; struct SPFA{
int n,m,tot;
Edge edges[maxm];
int head[maxn];
bool vis[maxn][];
int cnt[maxn][]; //最短路和次短路条数 void init(int n){
this->n = n;
this->tot=;
memset(head,-,sizeof(head));
}
void Addedge(int u,int v ,LL dist){
edges[tot].to = v;
edges[tot].val = dist;
edges[tot].next = head[u];
head[u] = tot++;
}
void spfa(int s){
for(int i=;i<=n;++i){
dis[i][]=INF,cnt[i][]=;
dis[i][]=INF,cnt[i][]=;
vis[i][]=vis[i][]=false;
}
dis[s][]=,cnt[s][]=;
priority_queue<Node> Q;
Q.push((Node){s,});
while(!Q.empty()){
Node x =Q.top();Q.pop();
int u = x.u,tag = x.tag;
if(vis[u][tag]) continue;
vis[u][tag] = true;
for(int i=head[u];~i;i=edges[i].next){
int v =edges[i].to,w =edges[i].val;
int tmp = dis[u][tag] + w;
if(dis[v][]>tmp) { //需要更新最短路
if(dis[v][]!=INF){ //将次短路覆盖
dis[v][] = dis[v][];
cnt[v][] = cnt[v][];
Q.push((Node){v,});
}
dis[v][]=tmp;
cnt[v][]=cnt[u][tag];
Q.push((Node){v,});
}
else if(dis[v][]==tmp){ //最短路长度不变,数量增加
cnt[v][]+=cnt[u][tag];
}
else if(dis[v][]>tmp){ //次短路长度改变
dis[v][] = tmp;
cnt[v][] = cnt[u][tag];
Q.push((Node){v,});
}
else if(dis[v][]==tmp){ //次短路长度不变,数量增加
cnt[v][]+=cnt[u][tag];
}
}
}
}
}G; #define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T,N,M,u,v, s,t;
LL tmp;
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&M);
G.init(N);
for(int i=;i<=M;++i){
scanf("%d%d%d",&u,&v,&tmp);
G.Addedge(u,v,tmp);
}
scanf("%d%d",&s,&t);
G.spfa(s);
if(dis[t][]==dis[t][]+)
G.cnt[t][]+=G.cnt[t][];
printf("%d\n",G.cnt[t][]);
}
return ;
}

POJ 3463 Sightseeing (次短路)的更多相关文章

  1. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  2. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  3. poj 3463 Sightseeing——次短路计数

    题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...

  4. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  5. POJ 3463 Sightseeing (次短路经数)

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:10005   Accepted: 3523 Descr ...

  6. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  7. POJ 3463 Sightseeing 题解

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  8. POJ 3463 Sightseeing

    最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...

  9. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

随机推荐

  1. Des加密方法

    //默认密钥向量 private static byte[] Keys = { 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF }; private st ...

  2. C++ 类的继承五(类继承中的static关键字)

    //类继承中的static关键字 #include<iostream> using namespace std; /* 派生类中的静态成员 基类定义的静态成员,将被所有派生类共享 根据静态 ...

  3. 使用jmeter实现对jar包的调用

    一.前言 在我们测试接口的过程中,可能有时需要用到第三方jar包来生成一些测试数据(如有时需要对参数的输入值使用第三方jar包进行加密操作),涉及到这种的情况,普遍做法是:手动调用jar包获得需要的值 ...

  4. (转)java中Executor、ExecutorService、ThreadPoolExecutor介绍

    转自: http://blog.csdn.net/linghu_java/article/details/17123057 ScheduledThreadPoolExecutor介绍: http:// ...

  5. SQLAllocStmt与SQLFreeStmt

    1.申请语句句柄 SQLAllocStmt函数为应用程序分配语句句柄,其格式为:RETCODE SQLAllocStmt(HDBC hdbc, HSTMT FAR * phstmt) 其中, hdbc ...

  6. 一入python深似海--变量和对象

    一.基本原理 Python中一切都是对象,变量是对象的引用. 这是一个普遍的法则.我们举个样例来说.Python是怎样来处理的. x = 'blue' y = 'green' z = x 当pytho ...

  7. 面试题思考:BS与CS的区别与联系

    简单的理解: bs是浏览器(browser)和服务器(server) cs是静态客户端程序(client)和服务器(server) 区别在于,虽然同样是通过一个程序连接到服务器进行网络通讯,但是bs结 ...

  8. java动态编译 (java在线执行代码后端实现原理)(二)

    在上一篇java动态编译 (java在线执行代码后端实现原理(一))文章中实现了 字符串编译成字节码,然后通过反射来运行代码的demo.这一篇文章提供一个如何防止死循环的代码占用cpu的问题. 思路: ...

  9. box-sizing与calc()与flex

    1,Syntax: /* Keyword values */ box-sizing: content-box; box-sizing: border-box; /* Global values */ ...

  10. thinkphp 模板里嵌入 php代码

    <php> echo 'nihao';</php><?phpecho 'gge';?> Php代码可以和标签在模板文件中混合使用,可以在模板文件里面书写任意的PHP ...