二叉树及其遍历方法---python实现
github:代码实现
本文算法均使用python3实现
1. 二叉树
1.1 二叉树的定义
二叉树是一种特殊的树,它具有以下特点:
(1)树中每个节点最多只能有两棵树,即每个节点的度最多为2。
(2)二叉树的子树有左右之分,即左子树与右子树,次序不能颠倒。
(3)二叉树即使只有一个子树时,也要区分是左子树还是右子树。
1.2 满二叉树
满二叉树作为一种特殊的二叉树,它是指:所有的分支节点都存在左子树与右子树,并且所有的叶子节点都在同一层上。其特点有:
(1)叶子节点只能出现在最下面一层
(2)非叶子节点度一定是2
(3)在同样深度的二叉树中,满二叉树的节点个数最多,节点个数为: $ 2^h -1 $ ,其中 $ h $ 为树的深度。

1.3 完全二叉树
若设二叉树的深度为 $ h $ ,除第 $ h $ 层外,其它各层 $ (1~h-1) $ 的结点数都达到最大个数,第 $ h $ 层所有的结点都连续集中在最左边,这就是完全二叉树。其具有以下特点:
(1)叶子节点可以出现在最后一层或倒数第二层。
(2)最后一层的叶子节点一定集中在左部连续位置。
(3)完全二叉树严格按层序编号。(可利用数组或列表进行实现,满二叉树同)
(4)若一个节点为叶子节点,那么编号比其大的节点均为叶子节点。

2. 二叉树的相关性质
2.1 二叉树性质
(1)在非空二叉树的 $ i $ 层上,至多有 $ 2^{i-1} $ 个节点 $ (i \geq 1) $ 。
(2)在深度为 $ h $ 的二叉树上最多有 $ 2^h -1 $ 个节点 $(k \geq 1) $ 。
(3)对于任何一棵非空的二叉树,如果叶节点个数为 $ n_0 $ ,度数为 $ 2 $ 的节点个数为 $ n_2 $ ,则有: $ n_0 = n_2 + 1 $ 。
2.1 完全二叉树性质
(1)具有 $ n $ 个的结点的完全二叉树的深度为 $ \log_2{n+1} $ 。.
(2)如果有一颗有 $ n $ 个节点的完全二叉树的节点按层次序编号,对任一层的节点 $ i ,(1 \geq i \geq n)$ 有:
(2.1)如果 $ i=1 $ ,则节点是二叉树的根,无双亲,如果 $ i>1 $ ,则其双亲节点为 $ \lfloor i/2 \rfloor $ 。
(2.2)如果 $ 2i>n $ 那么节点i没有左孩子,否则其左孩子为 $ 2i $ 。
(2.3)如果 $ 2i+1>n $ 那么节点没有右孩子,否则右孩子为 $ 2i+1 $ 。
3. 二叉树的遍历
以下遍历以该二叉树为例:

3.1 前序遍历
思想:先访问根节点,再先序遍历左子树,然后再先序遍历右子树。总的来说是根—左—右
上图先序遍历结果为为:$ 1,2,4,8,9,5,3,6,7 $
代码如下:
def PreOrder(self, root):
'''打印二叉树(先序)'''
if root == None:
return
print(root.val, end=' ')
self.PreOrder(root.left)
self.PreOrder(root.right)
3.2 中序遍历
思想:先中序访问左子树,然后访问根,最后中序访问右子树。总的来说是左—根—右
上图中序遍历结果为为:$ 8,4,9,2,5,1,6,3,7 $
代码如下:
def InOrder(self, root):
'''中序打印'''
if root == None:
return
self.InOrder(root.left)
print(root.val, end=' ')
self.InOrder(root.right)
3.3 后序遍历
思想:先后序访问左子树,然后后序访问右子树,最后访问根。总的来说是左—右—根
上图后序遍历结果为为:$ 8,9,4,5,2,6,7,3,1 $
代码如下:
def BacOrder(self, root):
'''后序打印'''
if root == None:
return
self.BacOrder(root.left)
self.BacOrder(root.right)
print(root.val, end=' ')
3.4 层次遍历(宽度优先遍历)
思想:利用队列,依次将根,左子树,右子树存入队列,按照队列的先进先出规则来实现层次遍历。
上图后序遍历结果为为:$ 1,2,3,4,5,6,7,8,9 $
代码如下:
def BFS(self, root):
'''广度优先'''
if root == None:
return
# queue队列,保存节点
queue = []
# res保存节点值,作为结果
#vals = []
queue.append(root)
while queue:
# 拿出队首节点
currentNode = queue.pop(0)
#vals.append(currentNode.val)
print(currentNode.val, end=' ')
if currentNode.left:
queue.append(currentNode.left)
if currentNode.right:
queue.append(currentNode.right)
#return vals
3.5 深度优先遍历
思想:利用栈,先将根入栈,再将根出栈,并将根的右子树,左子树存入栈,按照栈的先进后出规则来实现深度优先遍历。
上图后序遍历结果为为:$ 1,2,4,8,9,5,3,6,7 $
代码如下:
def DFS(self, root):
'''深度优先'''
if root == None:
return
# 栈用来保存未访问节点
stack = []
# vals保存节点值,作为结果
#vals = []
stack.append(root)
while stack:
# 拿出栈顶节点
currentNode = stack.pop()
#vals.append(currentNode.val)
print(currentNode.val, end=' ')
if currentNode.right:
stack.append(currentNode.right)
if currentNode.left:
stack.append(currentNode.left)
#return vals
3.6 代码运行结果

引用及参考:
[1]《数据结构》李春葆著
[2] http://www.cnblogs.com/polly333/p/4740355.html
写在最后:本文参考以上资料进行整合与总结,属于原创,文章中可能出现理解不当的地方,若有所见解或异议可在下方评论,谢谢!
若需转载请注明:https://www.cnblogs.com/lliuye/p/9143676.html
二叉树及其遍历方法---python实现的更多相关文章
- 【数据结构】二叉树的遍历(前、中、后序及层次遍历)及leetcode107题python实现
文章目录 二叉树及遍历 二叉树概念 二叉树的遍历及python实现 二叉树的遍历 python实现 leetcode107题python实现 题目描述 python实现 二叉树及遍历 二叉树概念 二叉 ...
- 算法与数据结构(三) 二叉树的遍历及其线索化(Swift版)
前面两篇博客介绍了线性表的顺序存储与链式存储以及对应的操作,并且还聊了栈与队列的相关内容.本篇博客我们就继续聊数据结构的相关东西,并且所涉及的相关Demo依然使用面向对象语言Swift来表示.本篇博客 ...
- python数据结构与算法——二叉树结构与遍历方法
先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历 采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # ...
- python基本数据类型list,tuple,set,dict用法以及遍历方法
1.list类型 类似于java的list类型,数据集合,可以追加元素与删除元素. 遍历list可以用下标进行遍历,也可以用迭代器遍历list集合 建立list的时候用[]括号 import sys ...
- Python与数据结构[3] -> 树/Tree[0] -> 二叉树及遍历二叉树的 Python 实现
二叉树 / Binary Tree 二叉树是树结构的一种,但二叉树的每一个节点都最多只能有两个子节点. Binary Tree: 00 |_____ | | 00 00 |__ |__ | | | | ...
- python实现二叉树的遍历以及基本操作
主要内容: 二叉树遍历(先序.中序.后序.宽度优先遍历)的迭代实现和递归实现: 二叉树的深度,二叉树到叶子节点的所有路径: 首先,先定义二叉树类(python3),代码如下: class TreeNo ...
- 二叉搜索树 & 二叉树 & 遍历方法
二叉搜索树 & 二叉树 & 遍历方法 二叉搜索树 BST / binary search tree https://en.wikipedia.org/wiki/Binary_searc ...
- python 中 五种字典(dict)的遍历方法,实验法比较性能。
1 .背景: 想知道5种遍历方法,并且知道从性能角度考虑,使用哪种. 2.结论: 使用这种方式: for key,val in AutoDict.iteritems(): temp = "% ...
- Python算法-二叉树深度优先遍历
二叉树 组成: 1.根节点 BinaryTree:root 2.每一个节点,都有左子节点和右子节点(可以为空) TreeNode:value.left.right 二叉树的遍历: 遍历二叉树:深度 ...
随机推荐
- Vue-cli 3.0 使用Sass Scss Less预处理器
项目中使用预处理器,可以有效减少css代码量,使用Sass||Scss||Less; 预处理器 你可以在创建项目的时候选择预处理器 (Sass/Less/Stylus).如果当时没有选好, 内置的 w ...
- Apache 错误:httpd: Could not open configuration file
神奇的事件,折磨我 电脑关机重启了一下关机之前正常的状态没有任何的异常出现,过了一会开机准备工作.神奇的事情tmd出现了!!!! 打开phpstudy 启动... 嗯?apache亮红报错?? 第一反 ...
- 数据结构之 AVL个人笔记
从这位前辈的博客园中学习的数据结构:https://www.cnblogs.com/skywang12345/ 非常感谢这位前辈. 以下文章摘录于 :skywang12345的博客园:转载请注明出处: ...
- 2018南京网络赛L题:Magical Girl Haze(最短路分层图)
题目链接:https://nanti.jisuanke.com/t/31001 解题心得: 一个BZOJ的原题,之前就写过博客了. 原题地址:https://www.lydsy.com/JudgeOn ...
- Maximum sum
描述 Given a set of n integers: A={a1, a2,-, an}, we define a function d(A) as below: t1 t2 d(A) = max ...
- LeetCode初级算法的Python实现--字符串
LeetCode初级算法的Python实现--字符串 # 反转字符串 def reverseString(s): return s[::-1] # 颠倒数字 def reverse(x): if x ...
- python之web架构
一.web架构简介 web.py是一个轻量级Python web框架,它简单而且功能强大.web.py是一个开源项目.该框架由已故美国作家.Reddit联合创始人.RSS规格合作创造者.著名计算机黑客 ...
- AIX7.1删除大批量文件(百万级、千万级)
假设/data/test目录下含有数百万上千万的文件需要删除,可以选择的方式如下: 1.如果文件名不包含空白符.引号等特殊字符,则可以使用如下命令: find /data/test -type f | ...
- NPOI List数据源 导出excel
List数据源生成HSSFWorkbook通用方法: public class WorkBook { public static HSSFWorkbook BuildSwitchData<T&g ...
- CentOS 7.2安装11g Grid Infrastructure
Preface Oracle claimed that 11g RAC is supported on Redhat Linux 7 and above version,but the ...