题目链接

AtCoder:https://agc006.contest.atcoder.jp/tasks/agc006_c

洛谷:https://www.luogu.org/problemnew/show/AT2164

Solution

注意到设第\(i\)个点的期望位置为\(p_i\),由中点公式可知这个点移动一次的期望位置变成了:

\[p_i'=\frac{2p_{i+1}-p_i+2p_{i-1}-p_i}{2}=p_{i+1}+p_{i-1}-p_i
\]

考虑这个序列的差分数组\(\Delta p_i=p_i-p_{i-1}\),考虑第\(i\)个位置发生一次变换会发生什么:

\[\Delta p_{i}'=p'_{i}-p_{i-1}=p_{i+1}-p_i=\Delta p_{i+1}\\
\Delta p_{i+1}'=p_{i+1}-p'_i=p_{i}-p_{i-1}=\Delta p_{i}
\]

其中\(\Delta p',p'\)表示变换之后的值,未加上标表示之前的值。

那么可以注意到这次变换实质上就是\({\rm swap}(\Delta p_i,\Delta p_{i+1})\)。

由于每轮操作都是一样的,那么我们可以把每轮操作写成一个置换,然后处理出倍增数组暴力跳就好了。

#include<bits/stdc++.h>
using namespace std; #define int long long void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long const int maxn = 1e5+10;
const int inf = 1e9;
const lf eps = 1e-8; int p[maxn],d[maxn],n,m,k,fa[maxn][61],a[maxn],b[maxn]; signed main() {
read(n);for(int i=1;i<=n;i++) read(p[i]),d[i]=p[i]-p[i-1],a[i]=i;
for(int i=1;i<=n;i++) b[i]=i;
read(m),read(k);
for(int i=1,x;i<=m;i++) read(x),swap(a[x],a[x+1]);
for(int i=1;i<=n;i++) fa[i][0]=a[i];
for(int i=1;i<=60;i++)
for(int x=1;x<=n;x++)
fa[x][i]=fa[fa[x][i-1]][i-1];
for(int t=k,x=1;x<=n;x++,t=k)
for(int i=60;~i;i--)
if(t>=(1ll<<i)) t-=(1ll<<i),b[x]=fa[b[x]][i];
for(int i=1;i<=n;i++) a[i]=d[b[i]];
for(int i=1;i<=n;i++) a[i]+=a[i-1],printf("%lld.0\n",a[i]);
return 0;
}

[AT2164] [agc006_c] Rabbit Exercise的更多相关文章

  1. AT2164 [AGC006C] Rabbit Exercise

    首先我们可以考虑一下 \(x\) 关于 \(y\) 的对称点的坐标,不难发现就是 \(x + 2 \times (y - x)\),那么期望的增量就会增加 \(2 \times (y - x)\).不 ...

  2. AT2164 Rabbit Exercise

    传送门 解题思路 首先考虑k=1的情况,对于每一个a[i],它可能会到a[i-1]*2-a[i] 与 a[i+1]*2-a[i]两个位置,概率都为%50,那么它的期望位置为 (a[i-1]*2-a[i ...

  3. [Atcoder Grand 006 C] Rabbit Exercise 解题报告 (期望)

    题目链接:https://www.luogu.org/problemnew/show/AT2164 https://agc006.contest.atcoder.jp/tasks/agc006_c 题 ...

  4. 【AtCoder】【思维】【置换】Rabbit Exercise

    题意: 有n只兔子,i号兔子开始的时候在a[i]号位置.每一轮操作都将若干只兔子依次进行操作: 加入操作的是b[i]号兔子,就将b[i]号兔子移动到关于b[i]-1号兔子现在所在的位置对称的地方,或者 ...

  5. AGC006 C Rabbit Exercise——思路(置换)

    题目:https://agc006.contest.atcoder.jp/tasks/agc006_c 选了 i 位置后 x[ i ] = x[ i-1 ] + x[ i+1 ] - x[ i ] . ...

  6. AGC600 C Rabbit Exercise —— 置换

    题目:https://agc006.contest.atcoder.jp/tasks/agc006_c 考虑 \( i \) 号兔子移动后位置的期望,是 \( x_{i+1} + x_{i-1} - ...

  7. AtCoder Grand Contest 006 C:Rabbit Exercise

    题目传送门:https://agc006.contest.atcoder.jp/tasks/agc006_c 题目翻译 数轴上有\(N\)只兔子,从\(1\)到\(N\)编号,每只兔子初始位置是\(x ...

  8. AT2164-[AGC006C]Rabbit Exercise【差分,倍增,数学期望】

    正题 题目链接:https://www.luogu.com.cn/problem/AT2164 题目大意 \(n\)只兔子编号为\(1\sim n\),第\(i\)只在坐标轴\(x_i\)处.然后\( ...

  9. 【AGC006C】Rabbit Exercise 置换

    题目描述 有\(n\)只兔子站在数轴上.为了方便,将这些兔子标号为\(1\ldots n\).第\(i\)只兔子的初始位置为\(a_i\). 现在这些兔子会按照下面的规则做若干套体操.每一套体操由\( ...

随机推荐

  1. 一 Hive安装及初体验

    一 .Hive安装及初体验 1 .hive简介 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 1.1直接使用hadoop面临的问题 ...

  2. What is the reason that a likelihood function is not a pdf?

    From: http://stats.stackexchange.com/questions/31238/what-is-the-reason-that-a-likelihood-function-i ...

  3. JavaWeb——JavaWeb开发入门

    一.基本概念 1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源( ...

  4. 「日常训练」 Yukari's Birthday(ZOJ-3665)

    题意与分析 二分题.考虑到n的范围是\(10^{12}\),注意到等比公式\(S=a_1\frac{1-q^n}{1-q} (q\ne 1)\),可以看出,不论q有多大(1除外,这个时候\(r=1,k ...

  5. Python内嵌函数与Lambda表达式

    //2018.10.29 内嵌函数与lambda 表达式 1.如果在内嵌函数中需要改变全局变量的时候需要用到global语句对于变 量进行一定的说明与定义 2.内部的嵌套函数不可以直接在外部进行访问 ...

  6. (转) GEM透视阴影贴图

    转载:小道 透视阴影贴图(Perspective Shadow Maps, PSMs)是由Stamminger和Drettakis在 SIGGRAPH 2002上提出的一种阴影贴图(Shadow Ma ...

  7. java核心技术 笔记

    一 . 总览 1. 类加载机制:jdk内嵌的class_loader有哪些,类加载过程.--后面需要补充 2. 垃圾收集基本原理,常见的垃圾收集器,各自适用的场景.--后面需要补充 3. 运行时动态编 ...

  8. NMAP-端口扫描

    1.时序选项 -T0 -> -T5 速度变快,但是准确性下降,nmap默认是T3 2.指定端口 3.扫描指定TCP和UDP端口 4.快速扫描常见100个端口 5.扫描常见的n的端口 6.TCP ...

  9. SpringBoot在IntelliJ IDEA下for MAC 热加载

    说在前面 热加载:文件内容变更服务器自动运行最新代码.实则在IDEA环境进行热部署后,下述过程一气呵成. 1代码变更,文件自动保存(IDEA自动保存代码,用户无需使用COMMAND+SAVE快捷键): ...

  10. ACM 第十二天

    博弈论(巴什博奕,威佐夫博弈,尼姆博弈,斐波那契博弈,SG函数,SG定理) 一.  巴什博奕(Bash Game): A和B一块报数,每人每次报最少1个,最多报4个,看谁先报到30.这应该是最古老的关 ...