http://www.lydsy.com/JudgeOnline/problem.php?id=4873

https://www.luogu.org/problemnew/show/P3749

简要题目:

一个序列,可以若干次取其中一段区间,区间及其子集的价值都会被统计进去且每个区间的价值只能被统计一次。

如果你拿c种x数,你需要花费m*x*x-c*x的代价。

求最大价值。

打眼一看是道网络流。

但是只能说自己网络流学艺不精啊,这样的题还得借助题解……

我们考虑令一段区间的价值即为d[i][j],则取一段区间[i,j],就必须得取[i+1,j]和[i,j-1],以此类推。

但是我们还有费用呢……

思考只要取了一种数,我们就一定会付出m*x*x的代价,所以我们对编号(设为i)建点,点权为-m*i*i。

再思考我们只要取了某个编号为i的寿司,必须付出i的代价,所以对每个寿司(即区间[i,i])的点权-i

这就是最大权闭合子图的模型了,把区间看成点,正点权连向源点,负点权连向汇点,点和点之间连的INF的边。

(但愿省选无悔)

#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
const int INF=1e9;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int nxt,to,w;
}edge[M];
int head[N],cnt=-,S,T;
void add(int u,int v,int w){
edge[++cnt].to=v;edge[cnt].w=w;edge[cnt].nxt=head[u];head[u]=cnt;
}
int lev[N],cur[N],dui[N];
bool bfs(int m){
int r=;
for(int i=;i<=m;i++){
lev[i]=-;
cur[i]=head[i];
}
dui[]=S,lev[S]=;
int u,v;
for(int l=;l<=r;l++){
u=dui[l];
for(int e=head[u];e!=-;e=edge[e].nxt){
v=edge[e].to;
if(edge[e].w>&&lev[v]==-){
lev[v]=lev[u]+;
r++;
dui[r]=v;
if(v==T)return ;
}
}
}
return ;
}
int dinic(int u,int flow,int m){
if(u==m)return flow;
int res=,delta;
for(int &e=cur[u];e!=-;e=edge[e].nxt){
int v=edge[e].to;
if(edge[e].w>&&lev[u]<lev[v]){
delta=dinic(v,min(edge[e].w,flow-res),m);
if(delta>){
edge[e].w-=delta;
edge[e^].w+=delta;
res+=delta;
if(res==flow)break;
}
}
}
if(res!=flow)lev[u]=-;
return res;
}
int n,m,d[][],a[],tot,num[][],ans;
int main(){
memset(head,-,sizeof(head));
n=read(),m=read();
for(int i=;i<=n;i++)a[i]=read();
S=,T=tot=;
for(int i=;i<=;i++){
add(i,T,m*i*i);add(T,i,);
}
for(int i=;i<=n;i++){
for(int j=;j<=n-i+;j++){
num[i][i+j-]=++tot;
d[i][i+j-]=read();
}
}
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
int v=d[i][j];
if(i==j){
v-=a[i];
add(num[i][j],a[i],INF);
add(a[i],num[i][j],);
}else{
add(num[i][j],num[i+][j],INF);
add(num[i+][j],num[i][j],);
add(num[i][j],num[i][j-],INF);
add(num[i][j-],num[i][j],);
}
if(v>){
ans+=v;
add(S,num[i][j],v);
add(num[i][j],S,);
}else{
add(num[i][j],T,-v);
add(T,num[i][j],);
}
}
}
while(bfs(tot))ans-=dinic(S,INF,T);
printf("%d\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4873:[SHOI2017]寿司餐厅——题解的更多相关文章

  1. 【最大权闭合子图】bzoj4873 [Shoi2017]寿司餐厅

    4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 369  Solved: 256[Submit][Status ...

  2. bzoj4873: [Shoi2017]寿司餐厅(最大权闭合子图)

    4873: [Shoi2017]寿司餐厅 大难题啊啊!!! 题目:传送门 题解:一眼题是网络流,但还是不会OTZ,菜啊... %题解... 最大权闭合子图!!! 好的...开始花式建边: 1.对于每个 ...

  3. BZOJ4873[Shoi2017]寿司餐厅——最大权闭合子图

    题目描述 Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个 代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号.每种寿司的份数都是无 ...

  4. bzoj4873 [Shoi2017]寿司餐厅

    Input 第一行包含两个正整数n,m,分别表示这家餐厅提供的寿司总数和计算寿司价格中使用的常数. 第二行包含n个正整数,其中第k个数ak表示第k份寿司的代号. 接下来n行,第i行包含n-i+1个整数 ...

  5. BZOJ4873 Shoi2017寿司餐厅(最小割)

    选择了某个区间就必须选择其所有子区间,容易想到这是一个最大权闭合子图的模型.考虑将区间按长度分层,相邻层按包含关系连边,区间[i,j]的权值即di,j,其中最后一层表示长度为1的区间的同时也表示寿司本 ...

  6. BZOJ4873 [Shoi2017]寿司餐厅 【最大权闭合子图】

    题目链接 BZOJ4873 题解 题意很鬼畜,就可以考虑网络流[雾] 然后就会发现这是一个裸的最大权闭合子图 就是注意要离散化一下代号 #include<algorithm> #inclu ...

  7. bzoj4873: [Shoi2017]寿司餐厅(最小割)

    传送门 大佬们是怎么一眼看出这是一个最大权闭合子图的……大佬好强->这里 1.把所有区间$(i,j)$看成一个点,如果权值大于0,则从$S$向他连边,容量为权值,否则从它向$T$连边,容量为权值 ...

  8. 【BZOJ4873】[Shoi2017]寿司餐厅 最大权闭合图

    [BZOJ4873][Shoi2017]寿司餐厅 Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号ai和美味度di ...

  9. [LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅

    [LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅 题意 比较复杂放LOJ题面好了qaq... Kiana 最近喜欢到一家非常美味的寿司餐厅用餐. 每天晚上,这家餐厅都会按顺序提供 ...

随机推荐

  1. uvaoj1586Molar mass(暴力)

    An organic compound is any member of a large class of chemicalcompounds whose molecules contain carb ...

  2. OSG-OSG中的observer_ptr指针

    看array大神的CookBook后一些感想,在代码上添加了一些注释,也对源码做了一些研读,记录下学习的过程. CookBook中第一个例子就是observer_ptr指针,这个指针和它的名字一样,就 ...

  3. (C#)原型模式—深复制与浅复制

    1.原型模式 用原型实例指定创建对象的实例,并且通过拷贝这些原型创建新的对象. *原型模式隐藏了创建对象的细节,提高了性能. *浅复制:被复制对象的所有变量都含有与原来对象相同的值,而且所有对其他对象 ...

  4. JAVA基础学习之路(五)数组的定义及使用

    什么是数组:就是一堆相同类型的数据放一堆(一组相关变量的集合) 定义语法: 1.声明并开辟数组 数据类型 数组名[] = new 数据类型[长度]: 2.分布完成 声明数组:数据类型 数组名 [] = ...

  5. Python基础简介

    一.目前各种语言的应用:java, 可以把特别小的项目做大,并且开源库比较多,C: 用在最底层,例如编写操作系统,运行速率快,开发效率低,C++:常坐游戏引擎Python:AI(人工智能) 简单.明确 ...

  6. C struct中的位域 bitfield

    C struct中的位域 bitfield 结构体的成员可以限制其位域,每个成员可以使用用比字节还小的取值范围,下面的结构体s1中,四个成员每个成员都是2bit的值(0~3),整个结构体占据的空间依然 ...

  7. SpringBoot在IntelliJ IDEA下for MAC 热加载

    说在前面 热加载:文件内容变更服务器自动运行最新代码.实则在IDEA环境进行热部署后,下述过程一气呵成. 1代码变更,文件自动保存(IDEA自动保存代码,用户无需使用COMMAND+SAVE快捷键): ...

  8. 为什么23种设计模式中没有MVC

    GoF (Gang of Four,四人组, <Design Patterns: Elements of Reusable Object-Oriented Software>/<设计 ...

  9. SpringMVC拦截器实现登录认证(转发)

    感谢原作者,转发自:http://blog.csdn.net/u014427391/article/details/51419521 以Demo的形式讲诉拦截器的使用 项目结构如图: 需要的jar:有 ...

  10. 【TCP】- TCP协议简介

    转载:https://blog.csdn.net/ningdaxing1994/article/details/73076795 TCP 是互联网核心协议之一,本文介绍它的基础知识. 一.TCP 协议 ...