ContestHunter暑假欢乐赛 SRM 03
你们也没人提醒我有atcoderQAQ...
A题曼哈顿距离=欧拉距离就是在同一行或者同一列,记录下i,j出现过的次数,减去就行,直接map过。
B题一开始拿衣服了,一直以为排序和不排序答案是一个样的QAQ
显然如果两个集合sum不一样就不可能,和这题好像啊。
然后求出两个集合对应元素的差的绝对值/2就是答案了。
C题经典题。前缀和+枚举+二分,感觉被写烂了。
正反都来,因为可以1,2,3,3,2,1,n,n-1,n-2,n-3这样看mp,所以枚举i,二分i~n作为另一个能看最多mp的断点,ans=max(看1~i的代价,看mid~n,n~i的代价)。
UPD:标尺法可以O(n),当时为什么没想到。。。
D题就是每个元素的下一个一定啊,为什么放在D题,还1500分。。。QAQ
E题想少了,不想补。。。
ContestHunter暑假欢乐赛 SRM 03的更多相关文章
- ContestHunter暑假欢乐赛 SRM 15
菜菜给题解,良心出题人!但我还是照常写SRM一句话题解吧... T1经典题正解好像是贪心...我比较蠢写了个DP,不过还跑的挺快的 f[i]=min( f[j-a[j]-1] )+1 { j+a[j ...
- ContestHunter暑假欢乐赛 SRM 04
逃了一场SRM(躺 A题可以看成0点到1点,有p的几率从0到1,1-p几率不动,求0到1的期望步数.很显然概率是不降序列数/n!,然后列个方程E[0] = E[0] * (1 - p) + 1,解得E ...
- ContestHunter暑假欢乐赛 SRM 02
惨不忍睹 3个小时都干了些什么... 日常按顺序从A题开始(难度居然又不是递增的 第一眼A题就觉得很简单...写到一半才发现woc那是个环.感觉一下子复杂了,按照链的方法扩展的话要特判很多东西... ...
- ContestHunter暑假欢乐赛 SRM 01 - 儿童节常数赛 爆陵记
最后15min过了两题...MDZZ 果然是不适合OI赛制啊...半场写完三题还自信满满的,还好有CZL报哪题错了嘿嘿嘿(这算不算犯规了(逃 悲惨的故事*1....如果没有CZL的话T1 10分 悲惨 ...
- ContestHunter暑假欢乐赛 SRM 09(TJM大傻逼选手再创佳绩)
T1 f[i]为前i页最少被撕几页,用二分转移就行了,答案为ans=min(f[i]+(n-i)); 不知道为什么写挂了嗯 二分的l初始应该是0 T2 数位DP f[i][1/0][1/0][1/0] ...
- ContestHunter暑假欢乐赛 SRM 08
rating再次跳水www A题贴HR题解!HR智商流选手太强啦!CYC也好强%%%发现了len>10大概率是Y B题 dp+bit优化,据LLQ大爷说splay也可以优化,都好强啊.. C题跑 ...
- ContestHunter暑假欢乐赛 SRM 06
T1二分check...为什么这么显然的我没看出来TAT,还在想倒着加入并查集check什么的,题写太多思维定势啦QAQ T2是NOIP题的弱化版...当时没看出来,写了个DP.可以看出这一位比上一位 ...
- ContestHunter暑假欢乐赛 SRM 05
T1 组合数,求一下乘法逆元就行了 没取模 没1LL* 爆零了 T2 让最大子段和最小就行,跑最大子段和的时候若超过S就弹出堆中最大的数,每次有负数加进来不断弹出最小的数相加重新加进堆直到为正数,因为 ...
- CH暑假欢乐赛 SRM 07 天才麻将少女KPM(DP+treap)
首先LIS有个$O(n^2)$的DP方法 $f(i,j)$表示前i个数,最后一个数<=j的LIS 如果$a_i!=0$则有 如果$a_i=0$则有 注意因为$f(i-1,j)\leq f(i-1 ...
随机推荐
- Allure--自动化测试报告生成
之前尝试使用过testNG自带的测试报告.优化过reportNG的测试报告,对这两个报告都不能满意.后经查找资料,发现有个神器: Allure(已经有allure2了,笔者使用的就是allure2), ...
- Siki_Unity_1-2_Unity5.2入门课程_进入Unity开发的奇幻世界_Roll A Ball
1-2 Unity5.2入门课程 进入Unity开发的奇幻世界 任务1:Roll A Ball项目简介 Unity官网的tutorial入门项目 方向键控制小球在平台上滚动,碰撞方块得分,消掉所有方块 ...
- vue watch监控对象
1.普通的watch data() { return { frontPoints: 0 } }, watch: { frontPoints(newValue, oldValue) { console. ...
- HTML/JSP中一些单书名号标签的用途<%-- --%><!-- --><%@ %><%! %><% %><%= %>
注释 <%-- --%>是(JSP)隐式注释,不会在页面显示的注释 <!-- -->是(Html)显示注释,会在JSP页面显示 关于注释还有单行隐式注释//和多行隐式注释/* ...
- cygwin—excellent work!
使用cygwin的好处在于可以避免直接使用linux同时又能最大限度的节省资源,共享windows的资源. 安装cygwin 安装安简单,当然,你首先需要使用163或者国内或者亚洲比较好的镜像作为下载 ...
- Paper Reading - Convolutional Image Captioning ( CVPR 2018 )
Link of the Paper: https://arxiv.org/abs/1711.09151 Motivation: LSTM units are complex and inherentl ...
- 1.安装CDH5.12.x
安装方式安装前准备安装步骤安装过程修改/etc/hosts设置ssh 互信修改linux 系统设置安装JDK1.8安装python2.7安装mysql/postgreysql数据库安装ntp设置本地y ...
- C中文件操作的文本模式和二进制模式,到底有啥区别?
在C中,使用fopen打开文件有两种模式:一种是文本模式,一种是二进制模式.那这两种模式之间有什么区别,是不是使用文本模式打开的文件就只能使用文本函数比如fprintf来操作,而使用二进制打开的文件就 ...
- Unicode,UTF-32,UTF-16,UTF-8到底是啥关系?
编码的目的,就是给抽象的字符赋予一个数值,好在计算机里面表示.常见的ASCII使用8bit给字符编码,但是实际只使用了7bit,最高位没有使用,因此,只能表示128个字符:ISO-8859-1(也叫L ...
- 福大软工1816 · 第五次作业 - 结对作业2_map与unordered map的比较测试
测试代码: #include <iostream> using namespace std; #include <string> #include <windows.h& ...