3 TensorFlow入门之识别手写数字
————————————————————————————————————
写在开头:此文参照莫烦python教程(墙裂推荐!!!)
————————————————————————————————————
分类实验之识别手写数字
- 这个实验的内容是:基于TensorFlow,实现手写数字的识别。
- 这里用到的数据集是大家熟知的mnist数据集。
- mnist有五万多张手写数字的图片,每个图片用28x28的像素矩阵表示。所以我们的输入层每个案列的特征个数就有28x28=784个;因为数字有0,1,2…9共十个,所以我们的输出层是个1x10的向量。输出层是十个小于1的非负数,表示该预测是0,1,2…9的概率,我们选取最大概率所对应的数字作为我们的最终预测。
- 真实的数字表示为该数字所对应的位置为1,其余位置为0的1x10的向量。
下面就开始实验啦!
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#导入数据
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)#如果还没下载mnist就下载
#定义添加层
def add_layer(inputs,in_size,out_size,activation_function=None):
#定义添加层内容,返回这层的outputs
Weights = tf.Variable(tf.random_normal([in_size,out_size]))#Weigehts是一个in_size行、out_size列的矩阵,开始时用随机数填满
biases = tf.Variable(tf.zeros([1,out_size])+0.1) #biases是一个1行out_size列的矩阵,用0.1填满
Wx_plus_b = tf.matmul(inputs,Weights)+biases #预测
if activation_function is None: #如果没有激励函数,那么outputs就是预测值
outputs = Wx_plus_b
else: #如果有激励函数,那么outputs就是激励函数作用于预测值之后的值
outputs = activation_function(Wx_plus_b)
return outputs
#定义计算正确率的函数
def t_accuracy(t_xs,t_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:t_xs})
correct_pre = tf.equal(tf.argmax(y_pre,1),tf.argmax(t_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_pre,tf.float32))
result = sess.run(accuracy,feed_dict={xs:t_xs,ys:t_ys})
return result
#定义神经网络的输入值和输出值
xs = tf.placeholder(tf.float32,[None,784]) #None是不规定大小,这里指的是案例个数,而输入特征个数为28x28 = 784
ys = tf.placeholder(tf.float32,[None,10]) #Nnoe也是案例个数,不做规定;10是因为有10个数字,所以输出是10
#增加输出层
prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax)#这里的激励函数是softmax,此函数多用于多类分类
#计算误差
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) #此误差计算方式和softmax配套用,效果好
#训练
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)#学习因子为0.5
#开始训练
sess = tf.Session()
sess.run(tf.initialize_all_variables())
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100) #提取数据集的100个数据,因为原来数据太大了
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50 == 0:
print (t_accuracy(mnist.test.images,mnist.test.labels)) #每隔50个,打印一下正确率。注意:这里是要用test的数据来测试
Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
0.1849
0.6537
0.7393
0.7836
0.8053
0.8203
0.8275
0.837
0.8465
0.8504
0.8567
0.8571
0.8643
0.8637
0.8664
0.8687
0.8719
0.8742
0.8763
0.8773
上面4行就是下载的mnist数据集的四个文件。然后看打印出来的正确率可知,这个网络的预测能力是越来越好的。
下面试一下啊,抽取500个数据来训练,看看效果如何:
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(500) #提取数据集的500个数据,因为原来数据太大了
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50 == 0:
print (t_accuracy(mnist.test.images,mnist.test.labels)) #每隔50个,打印一下正确率。注意:这里是要用test的数据来测试
0.9001
0.9022
0.9023
0.9026
0.903
0.903
0.9037
0.9036
0.9034
0.9027
0.9041
0.903
0.9039
0.9034
0.9037
0.9046
0.9055
0.9045
0.9053
0.905
由上面打印出来的正确率可知,抽取500个数据来训练的话,正确率会达到90%
*点击[这儿:TensorFlow]发现更多关于TensorFlow的文章*
3 TensorFlow入门之识别手写数字的更多相关文章
- 6 TensorFlow实现cnn识别手写数字
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...
- 学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字
TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology ...
- TensorFlow实战之Softmax Regression识别手写数字
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...
- 一文全解:利用谷歌深度学习框架Tensorflow识别手写数字图片(初学者篇)
笔记整理者:王小草 笔记整理时间2017年2月24日 原文地址 http://blog.csdn.net/sinat_33761963/article/details/56837466?fps=1&a ...
- 使用神经网络来识别手写数字【译】(三)- 用Python代码实现
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNI ...
- python手写神经网络实现识别手写数字
写在开头:这个实验和matlab手写神经网络实现识别手写数字一样. 实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手 ...
- 用BP人工神经网络识别手写数字
http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb5 ...
- python机器学习使用PCA降维识别手写数字
PCA降维识别手写数字 关注公众号"轻松学编程"了解更多. PCA 用于数据降维,减少运算时间,避免过拟合. PCA(n_components=150,whiten=True) n ...
- KNN 算法-实战篇-如何识别手写数字
公号:码农充电站pro 主页:https://codeshellme.github.io 上篇文章介绍了KNN 算法的原理,今天来介绍如何使用KNN 算法识别手写数字? 1,手写数字数据集 手写数字数 ...
随机推荐
- OpenERP report doesn't work
1. When you have used OpenOffice edited one of reports,it has stored the report's banary data is da ...
- centos7 mysql 5.7 官网下载tar安装
https://dev.mysql.com/downloads/mysql/5.7.html#downloads 下载好上传到服务器,解压后以此安装 libs,client,server三个rpm r ...
- ThinkPHP 模板 Volist 标签嵌套循环输出多维数组
ThinkPHP 中对 volist 标签嵌套使用可实现多维数组的输出. volist 嵌套使用 一般的二维数组,可以用 volist 标签直接循环输出.对于多维数组,则需要对其中的数组成员再次使用 ...
- 【Debian】install
n年前的报废台式机实在不能忍受xp的速度,果断装Linux近期家里的小本装了Ubuntu14.04 ,实在不习惯最新的图形界面.装个debian试试吧. 1.专门弄一个空白分区2.官网下载debian ...
- 理解java的 多态
http://www.cnblogs.com/chenssy/p/3372798.html
- 在window把项目上传到github
作为一个开发者,写博客,上传项目到github好像是不可不会的技能,很多有经验的老司机都会这么建议你.本宝宝第一次要把项目传到github的时候,确实有点蒙蔽,什么鬼,传个东西有必要这么难吗? git ...
- Python全栈day24-25(面向对象编程)
参考文档: http://www.cnblogs.com/linhaifeng/articles/6182264.html# 类:把一类事物的相同的特征和动作整合到一起就是类,类是抽象的概练 对象:就 ...
- PAT 1013 Battle Over Cities(并查集)
1013. Battle Over Cities (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue It ...
- HDU 1695 GCD (欧拉函数,容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 记录--关于Jquery uploadify 不能动态传值的问题(java)
动态传值纠结多时后无效, 后得下面一番代码,依旧无效~~ 纳了几个闷,心灰意冷下 清理了 tomcat 一次 再出运行 可以了 真心纠结很久很久 无奈之下还是得 清理清理tomcat: ...