【bzoj5452】[Hnoi2016]大数(莫队)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4542
首先若p=2,5则这题就是道傻逼题,前缀和搞一下没了。如果p为其他质数,那么可以这么处理:
我们先预处理出数组num[i]表示原串第i~n位表示的数模p的余数,那么第l~r位表示的数模p的余数为(num[l]-num[r+1])/10^(n-r),因为10^(n-r)与p互质,所以若num[l]=num[r+1],则第l~r位表示的数是p的倍数。于是莫队一下就好了。
代码:
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<string>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#define ll long long
#define ull unsigned long long
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define lowbit(x) (x& -x)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define eps 1e-18
#define maxn 2000010
inline ll read(){ll tmp=; char c=getchar(),f=; for(;c<''||''<c;c=getchar())if(c=='-')f=-; for(;''<=c&&c<='';c=getchar())tmp=(tmp<<)+(tmp<<)+c-''; return tmp*f;}
inline ll power(ll a,ll b){ll ans=; for(;b;b>>=){if(b&)ans=ans*a%mod; a=a*a%mod;} return ans;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void swap(int &a,int &b){int tmp=a; a=b; b=tmp;}
using namespace std;
struct data{
int l,r,id;
}a[];
struct data2{
ll val;
int id;
}x[];
char s[];
ll rk[],cnt[],ans[],sum1[],sum2[];
int n,m,size;
ll p,tot;
bool cmp(data a,data b){return a.l/size!=b.l/size?a.l/size<b.l/size:a.r<b.r;}
bool cmp2(data2 a,data2 b){return a.val<b.val;}
int main()
{
p=read();
scanf("%s",s); n=strlen(s); size=sqrt(n);
m=read();
if(p==||p==){
sum1[]=sum2[]=;
for(int i=;i<=n;i++){
sum1[i]=sum1[i-]; sum2[i]=sum2[i-];
if((s[i-]-'')%p==)++sum1[i],sum2[i]+=i;
}
for(int i=;i<=m;i++){
int l=read(),r=read();
printf("%lld\n",sum2[r]-sum2[l-]-(sum1[r]-sum1[l-])*(l-));
}
fclose(stdin); fclose(stdout);
return ;
}
for(int i=;i<=m;i++)
a[i].l=read()-,a[i].r=read(),a[i].id=i;
sort(a+,a+m+,cmp);
ll tmp=; x[n].val=; x[n].id=n;
for(int i=n-;i>=;i--,tmp=tmp*%p)x[i].val=(x[i+].val+(s[i]-'')*tmp)%p,x[i].id=i;
sort(x,x+n+,cmp2);
rk[x[].id]=;
for(int i=;i<=n;i++)
if(x[i].val==x[i-].val)rk[x[i].id]=rk[x[i-].id];
else rk[x[i].id]=i;
tot=;
for(int i=a[].l;i<=a[].r;i++)
tot+=cnt[rk[i]]++;
ans[a[].id]=tot;
for(int i=;i<=m;i++){
if(a[i-].l<a[i].l){
for(int j=a[i-].l;j<a[i].l;j++)
tot-=--cnt[rk[j]];
}
else{
for(int j=a[i].l;j<a[i-].l;j++)
tot+=cnt[rk[j]]++;
}
if(a[i-].r<a[i].r){
for(int j=a[i-].r+;j<=a[i].r;j++)
tot+=cnt[rk[j]]++;
}
else{
for(int j=a[i].r+;j<=a[i-].r;j++)
tot-=--cnt[rk[j]];
}
ans[a[i].id]=tot;
}
for(int i=;i<=m;i++)
printf("%lld\n",ans[i]);
}
bzoj4542
【bzoj5452】[Hnoi2016]大数(莫队)的更多相关文章
- 【BZOJ4542】[Hnoi2016]大数 莫队
[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...
- BZOJ.4542.[HNOI2016]大数(莫队)
题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...
- [BZOJ4542] [Hnoi2016] 大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
- 【bzoj4542】[Hnoi2016]大数 莫队算法
题目描述 给出一个数字串,多次询问一段区间有多少个子区间对应的数为P的倍数.其中P为质数. 输入 第一行一个整数:P.第二行一个串:S.第三行一个整数:M.接下来M行,每行两个整数 fr,to,表示对 ...
- bzoj4542 [Hnoi2016]大数 莫队+同余
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4542 题解 我们令 \(f_i\) 表示从 \(i\) 到 \(n\) 位组成的数 \(\bm ...
- bzoj 4542: [Hnoi2016]大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- [BZOJ4542] [JZYZOJ2014][Hnoi2016] 大数(莫队+离散化)
正经题解在最下面 http://blog.csdn.net/qq_32739495/article/details/51286548 写的时候看了大神的题解[就是上面那个网址],看到下面这段话 观察题 ...
- [HNOI2016]序列(莫队,RMQ)
[HNOI2016]序列(莫队,RMQ) 洛谷 bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
随机推荐
- android 127.0.0.1/localhost connection refused,在模拟器上应该用10.0.2.2访问你的电脑本机
调试中通过android simulator模拟器链接localhost或者127.0.0.1,因为我在电脑上面建立了apache,我的代码大概就是URL url = new URL(urlStrin ...
- ubuntu16.04搭建jdk1.8运行环境
搭建环境:Ubuntu 16.04 ×64 JDK :jdk-8u171-linux-x64.tar.gz 首先下载linux对应的安装包下载地址:http://www.oracle.com/tech ...
- Design Pattern - 访问者模式
访问者模式 访问者模式(Visitor), 表示一个作用于某对象结构中的各元素的操作.它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作. 这个模式相对比较复杂, 而又很少能被用上, 拿G ...
- js生成二维码/html2canvas生成屏幕截图
1.需求简述 (1) 最初需求: 根据后台接口获取url,生成一个二维码,用户可以长按保存为图片.(这时的二维码只是纯黑白像素构成的二维码) 方案1: 使用jquery.qrcode.min.js插件 ...
- SQL与Access使用查询结果集更新表
SQL语法 update 表1 set 字段1 = bb.字段1 from 表1 as aa, (select 字段1,字段2 from 表) bb where aa.字段2 = bb.字段2 Acc ...
- spring 实现定时任务
spring实现定时任务超级简单.比使用quartz简单,比使用timer强大.如下是一个简单的springboot任务,启用了定时任务 @SpringBootApplication@Componen ...
- Python中的不同进制的语法和转换
不同进制的书写方式 八进制(Octal) 0o377 十六进制(Hex) 0xFF 二进制(Binary) 0b11111111 不同进制之间的转换 python提供了三个内置的函数,能够用来在不同进 ...
- 几分钟私人定制APP全攻略!!
上网百度了一下什么是自媒体,你会看到这种介绍:自媒体(外文名:We Media)又称"公民媒体"或"个人媒体",是指私人化.平民化.普泛化.自主化的传播者,以现 ...
- Linux学习笔记(7)CRT实现windows与linux的文件上传下载
Linux学习笔记(7)CRT实现windows与linux的文件上传下载 按下Alt + p 进入SFTP模式,或者右击选项卡进入 命令介绍 help 显示该FTP提供所有的命令 lcd 改变本地上 ...
- 006-基于hyperledger fabric1.4( 官方文档)编写第一个应用【外部nodejs调用】
一.概述 官方原文地址 Writing Your First Application如果对fabric网络的基本运行机制不熟悉的话,请看这里. 注意:本教程是对fabric应用以及如何使用智能合约的简 ...