bzoj 1564 [NOI2009]二叉查找树 区间DP
[NOI2009]二叉查找树
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 906 Solved: 630
[Submit][Status][Discuss]
Description

Input

Output
Sample Input
1 2 3 4
1 2 3 4
1 2 3 4
Sample Output
HINT
输入的原图是左图,它的访问代价是1×1+2×2+3×3+4×4=30。最佳的修改方案是把输入中的第3个结点的权值改成0,得到右图,访问代价是1×2+2×3+3×1+4×2=19,加上额外修改代价10,一共是29。
Source
(1)将根节点i的权值修改为m,有dp[l][r][m] = dp[l][i - 1][m] + dp[i + 1][r][m] + K
(2)根节点i的权值≥m时,dp[l][r][m] = dp[l][i - 1][i的权值 + 1] + dp[i + 1][r][i的权值 + 1]
求得dp[l][r][m]最小值后,再给dp[l][r][m]加上[l, r]每个节点的访问频度。
这道题目就是默认了,每个权值都可以取到。
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue> #define N 87
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,K;
struct Node
{
int v,w,f;
friend bool operator<(Node x,Node y)
{
return x.v<y.v;
}
}a[N];
int f[N][N][N],stk[N],tot;
int sum[N]; int main()
{
n=read(),K=read();
for (int i=;i<=n;i++)
a[i].v=read();
for (int i=;i<=n;i++)
a[i].w=read(),stk[++tot]=a[i].w;
for (int i=;i<=n;i++)
a[i].f=read();
sort(stk+,stk+n+);
for (int i=;i<=n;i++)
a[i].w=lower_bound(stk+,stk+n+,a[i].w)-stk;
sort(a+,a+n+);
for (int i=;i<=n;i++)
sum[i]=sum[i-]+a[i].f;
memset(f,0x3f,sizeof(f));
for (int i=;i<=n+;i++)
for (int w=;w<=n;w++)
f[i][i-][w]=;
for (int w=n;w>=;w--)
for (int i=n;i>=;i--)
for (int j=i;j<=n;j++)
for (int k=i;k<=j;k++)
{
f[i][j][w]=min(f[i][j][w],f[i][k-][w]+f[k+][j][w]+K+sum[j]-sum[i-]);
if(a[k].w>=w) f[i][j][w]=min(f[i][j][w],f[i][k-][a[k].w]+f[k+][j][a[k].w]+sum[j]-sum[i-]);
}
int ans=0x7f7f7f7f;
for (int i=;i<=n;i++)
ans=min(ans,f[][n][i]);
printf("%d\n",ans);
}
bzoj 1564 [NOI2009]二叉查找树 区间DP的更多相关文章
- BZOJ 1564: [NOI2009]二叉查找树( dp )
树的中序遍历是唯一的. 按照数据值处理出中序遍历后, dp(l, r, v)表示[l, r]组成的树, 树的所有节点的权值≥v的最小代价(离散化权值). 枚举m为根(p表示访问频率): 修改m的权值 ...
- 洛谷$P1864\ [NOI2009]$二叉查找树 区间$dp$
正解:区间$dp$ 解题报告: 传送门$QwQ$ 首先根据二叉查找树的定义可知,数据确定了,这棵树的中序遍历就已经改变了,唯一能改变的就是通过改变权值从而改变结点的深度. 发现这里权值的值没有意义,所 ...
- bzoj 1564 [NOI2009]二叉查找树(树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1564 [题意] 给定一个Treap,总代价为深度*距离之和.可以每次以K的代价修改权值 ...
- BZOJ 1564 :[NOI2009]二叉查找树(树型DP)
二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...
- BZOJ 1564: [NOI2009]二叉查找树
链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1564 Description Input Output 只有一个数字,即你所能得到的整棵树的访 ...
- [BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp
1564: [NOI2009]二叉查找树 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 879 Solved: 612[Submit][Status] ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- BZOJ 2933([Poi1999]地图-区间Dp)
2933: [Poi1999]地图 Time Limit: 1 Sec Memory Limit: 128 MB Submit: 7 Solved: 7 [ Submit][ Status] ...
- BZOJ 1055 玩具取名(区间DP)
很显然的区间DP,定义dp[i][j][k], 如果dp[i][j][k]=1表示字符串[i,j]可以组成k字符. # include <cstdio> # include <cst ...
随机推荐
- 一种跨平台的C++遍历目录的方法
参考了网络上各路大神的实现方法.主要使用了io.h库 #include <iostream> #include <cstring> #include <io.h> ...
- PAT-甲级解题目录
PAT甲级题目:点这里 pat解题列表 题号 标题 题目类型 10001 1001 A+B Format (20 分) 字符串处理 1003 1003 Emergency (25 分) 最短路径 ...
- 2018java开发一些面经
算法系列:https://www.cnblogs.com/yanmk/p/9232908.html 2018Java开发面经(持续更新) 不要给自己挖坑!!!不要给自己挖坑!!!不要给自己挖坑!!!如 ...
- c# html 导出excel
[CustomAuthorize] public FileResult ExportCustomerManagerVisitExcel(string dateType, string r ...
- 使用libpcab抓包&处理包
#include <stdio.h> #include <stdlib.h> #include <strings.h> #include <string.h& ...
- DFS中的奇偶剪枝(技巧)
剪枝是什么,简单的说就是把不可行的一些情况剪掉,例如走迷宫时运用回溯法,遇到死胡同时回溯,造成程序运行时间长.剪枝的概念,其实就跟走迷宫避开死胡同差不多.若我们把搜索的过程看成是对一棵树的遍历,那么剪 ...
- 基于spec评论“欢迎来怼”团队Alpha版作品
“欢迎来怼”团队的作品是手机版博客园 1.获取此博客园app的方式——二维码 通过扫描二维码的方式下载app,这是当今比较流行的方式,适合广大手机的使用者——青少年的使用习惯. 2.点击图标,进入该a ...
- Divide two integers without using multiplication, division and mod operator.
描述 不能使用乘法.除法和取模(mod)等运算,除开两个数得到结果,如果内存溢出则返回Integer类型的最大值.解释一下就是:输入两个数,第一个数是被除数dividend,第二个是除数divisor ...
- php裁剪图片(支持定点裁剪)
/** * 图片裁剪函数,支持指定定点裁剪和方位裁剪两种裁剪模式 * @param <string> $src_file 原图片路径 * @param <int> $new_w ...
- delphi7中 OnDrawColumnCell 事件怎么用
你问的这个事件应该是dbgrid控件中的吧?这个事件是在grid控件载入数据的时候触发的,至于你这个“怎么用”波及的范围太大了,呵呵!不知道如何说起!另外还是发一段相关的代码吧,这也是我之前提过问题, ...