[NOI2009]二叉查找树

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 906  Solved: 630
[Submit][Status][Discuss]

Description

Input

Output

只有一个数字,即你所能得到的整棵树的访问代价与额外修改代价之和的最小值。

Sample Input

4 10
1 2 3 4
1 2 3 4
1 2 3 4

Sample Output

29

HINT

输入的原图是左图,它的访问代价是1×1+2×2+3×3+4×4=30。最佳的修改方案是把输入中的第3个结点的权值改成0,得到右图,访问代价是1×2+2×3+3×1+4×2=19,加上额外修改代价10,一共是29。

Source

 题解:这个是个Treap模型应该都知道,然后这题的数据范围应该70吧,题目没写。
    正解是dp很难想,dp[l][r][m]表示,区间[l, r]的节点组成的树中的,根节点的权值≥m的最小代价
    然后枚举根节点转移。

    (1)将根节点i的权值修改为m,有dp[l][r][m] = dp[l][i - 1][m] + dp[i + 1][r][m] + K

    (2)根节点i的权值≥m时,dp[l][r][m] = dp[l][i - 1][i的权值 + 1] + dp[i + 1][r][i的权值 + 1]

    求得dp[l][r][m]最小值后,再给dp[l][r][m]加上[l, r]每个节点的访问频度。

    这道题目就是默认了,每个权值都可以取到。

 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue> #define N 87
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,K;
struct Node
{
int v,w,f;
friend bool operator<(Node x,Node y)
{
return x.v<y.v;
}
}a[N];
int f[N][N][N],stk[N],tot;
int sum[N]; int main()
{
n=read(),K=read();
for (int i=;i<=n;i++)
a[i].v=read();
for (int i=;i<=n;i++)
a[i].w=read(),stk[++tot]=a[i].w;
for (int i=;i<=n;i++)
a[i].f=read();
sort(stk+,stk+n+);
for (int i=;i<=n;i++)
a[i].w=lower_bound(stk+,stk+n+,a[i].w)-stk;
sort(a+,a+n+);
for (int i=;i<=n;i++)
sum[i]=sum[i-]+a[i].f;
memset(f,0x3f,sizeof(f));
for (int i=;i<=n+;i++)
for (int w=;w<=n;w++)
f[i][i-][w]=;
for (int w=n;w>=;w--)
for (int i=n;i>=;i--)
for (int j=i;j<=n;j++)
for (int k=i;k<=j;k++)
{
f[i][j][w]=min(f[i][j][w],f[i][k-][w]+f[k+][j][w]+K+sum[j]-sum[i-]);
if(a[k].w>=w) f[i][j][w]=min(f[i][j][w],f[i][k-][a[k].w]+f[k+][j][a[k].w]+sum[j]-sum[i-]);
}
int ans=0x7f7f7f7f;
for (int i=;i<=n;i++)
ans=min(ans,f[][n][i]);
printf("%d\n",ans);
}

bzoj 1564 [NOI2009]二叉查找树 区间DP的更多相关文章

  1. BZOJ 1564: [NOI2009]二叉查找树( dp )

    树的中序遍历是唯一的. 按照数据值处理出中序遍历后, dp(l, r, v)表示[l, r]组成的树, 树的所有节点的权值≥v的最小代价(离散化权值). 枚举m为根(p表示访问频率): 修改m的权值 ...

  2. 洛谷$P1864\ [NOI2009]$二叉查找树 区间$dp$

    正解:区间$dp$ 解题报告: 传送门$QwQ$ 首先根据二叉查找树的定义可知,数据确定了,这棵树的中序遍历就已经改变了,唯一能改变的就是通过改变权值从而改变结点的深度. 发现这里权值的值没有意义,所 ...

  3. bzoj 1564 [NOI2009]二叉查找树(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1564 [题意] 给定一个Treap,总代价为深度*距离之和.可以每次以K的代价修改权值 ...

  4. BZOJ 1564 :[NOI2009]二叉查找树(树型DP)

    二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...

  5. BZOJ 1564: [NOI2009]二叉查找树

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1564 Description Input Output 只有一个数字,即你所能得到的整棵树的访 ...

  6. [BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp

    1564: [NOI2009]二叉查找树 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 879  Solved: 612[Submit][Status] ...

  7. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  8. BZOJ 2933([Poi1999]地图-区间Dp)

    2933: [Poi1999]地图 Time Limit: 1 Sec   Memory Limit: 128 MB Submit: 7   Solved: 7 [ Submit][ Status] ...

  9. BZOJ 1055 玩具取名(区间DP)

    很显然的区间DP,定义dp[i][j][k], 如果dp[i][j][k]=1表示字符串[i,j]可以组成k字符. # include <cstdio> # include <cst ...

随机推荐

  1. 技本功丨知否知否,Redux源码竟如此意味深长(上集)

    夫 子 说 元月二号欠下袋鼠云技术公号一篇关于Redux源码解读的文章,转眼月底,期间常被“债主”上门催债.由于年底项目工期比较紧,于是债务就这样被利滚利.但是好在这段时间有点闲暇,于是赶紧把这篇文章 ...

  2. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  3. 第一周 Welcome

    什么是机器学习 您也许一天用它几十次都不知道,每次你用google或者bing搜索网页感觉很厉害,因为他们用机器学习软件来设计网页排名,当你用Facebook或Apple的照片软件而它们知道照片里面哪 ...

  4. LeetCode 138——复制带随机指针的链表

    1. 题目 2. 解答 第一次遍历链表的时候,复制旧链表的节点值建立一个新的链表,同时定义一个 unordered_map 作为哈希表,哈希表的键为旧链表的节点指针,值为新链表的节点指针. 然后,第二 ...

  5. 关于GitHub推送时发生Permission denied (publickey)的问题

    今天在学习廖雪峰老师官网的git教程“添加远程库”时发现总是推送失败,下边提示“Permission denied (publickey) 这个问题” 传送门:https://www.liaoxuef ...

  6. Line belt(三分镶嵌)

    In a two-dimensional plane there are two line belts, there are two segments AB and CD, lxhgww's spee ...

  7. C语言文件基本操作

    1.用文本方式储存‘1’,‘0’,‘2’存入文件,然后用二进制方式从文件开头读出一个short型数据,并验证结果是否正确 #include<stdio.h> #include<str ...

  8. C语言 命令行参数 函数指针 gdb调试

    . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/21551397 | http://www.hanshul ...

  9. JavaScript初探系列之基本概念

    JavaScript的核心语言特性在ECMA-262中是以名为ECMAScript(ECMA, EuropeanComputer Manufacturers Association )的伪语言的形式来 ...

  10. unity 学习记录

    世界第九条约定 缘起 嗯,其实一开始我知道unity是个弄游戏的,也知道好像神庙逃亡,炉石都是出自unity,然后舍友都报了,我也觉得这个东西挺高大上的,所以忍不住自己的双手,报了名,确实,这能学到很 ...