HDU1573 线性同余方程(解的个数)
X问题
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5974 Accepted Submission(s): 2053
//如果r是解,r+M*i(i=0,1,2,3.....)也是解。M是除数的最小公倍数。然后模板。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
typedef long long ll;
int M,R;
void ex_gcd(int a,int b,int &d,int &x,int &y)//扩展欧几里得
{
if(!b) {d=a;x=;y=;}
else{
ex_gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
int ex_crt(int *m,int *r,int n)
{
int x,y,d;M=m[],R=r[];
for(int i=;i<=n;i++){
ex_gcd(M,m[i],d,x,y);
if((r[i]-R)%d) return -;
x=(r[i]-R)/d*x%(m[i]/d);
R+=x*M;
M=M/d*m[i];
R%=M;
}
return R>?R:R+M;
}
int main()
{
int t,n,s;
scanf("%d",&t);
for(int cas=;cas<=t;cas++){
scanf("%d%d",&s,&n);
int m[maxn],r[maxn],ans=;//m除数,r余数
for(int i=;i<=n;i++) scanf("%d",&m[i]);
for(int i=;i<=n;i++) scanf("%d",&r[i]);
int tmp=ex_crt(m,r,n);
if(tmp>s||tmp==-) ans=;
else ans=(s-tmp)/M+;
printf("%d\n",ans);
}
return ;
}
HDU1573 线性同余方程(解的个数)的更多相关文章
- hdu1573(线性同余方程组)
套模板,因为要是正整数,所以处理一下x=0的情况. X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- HDU1573:X问题(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573 题目解析;HDU就是坑,就是因为n,m定义成了__int64就WAY,改成int就A了,无语. 这题 ...
- 扩展欧几里得,解线性同余方程 逆元 poj1845
定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return ...
- HDU1573 X问题【一元线性同余方程组】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1573 题目大意: 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X ...
- HDU3579:Hello Kiki(解一元线性同余方程组)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3579 题目解析:求一元线性同余方程组的最小解X,需要注意的是如果X等于0,需要加上方程组通解的整数区间lc ...
- 数论之同余性质 线性同余方程&拔山盖世BSGS&中国剩余定理
先记录一下一些概念和定理 同余:给定整数a,b,c,若用c不停的去除a和b最终所得余数一样,则称a和b对模c同余,记做a≡b (mod c),同余满足自反性,对称性,传递性 定理1: 若a≡b (mo ...
- AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ...
- 数论 - n元线性同余方程的解法
note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m ...
- POJ1061 青蛙的约会(线性同余方程)
线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...
随机推荐
- python 文件编译成exe可执行文件。
pyinstaller打包方法: pyinstaller安装参考地址:http://www.pyinstaller.org/ pywin32的下载地址:https://sourceforge.net/ ...
- 259 [LeetCode] 3Sum Smaller 三数之和较小值
题目: Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 ...
- BZOJ 4361 isn 容斥+dp+树状数组
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...
- vue移动音乐app开发学习(一):环境搭建
本系列文章是为了记录学习中的知识点,便于后期自己观看.如果有需要的同学请登录慕课网,找到Vue 2.0 高级实战-开发移动端音乐WebApp进行观看,传送门. 一:使用vue-cli脚手架搭建: 1: ...
- Python学习之路4 - 文件操作&编码转换
文件操作 文件操作大概分三步: 把文件打开. 操作文件. 把文件关上. 打开文件 打开文件用open()函数,打开成功后返回一个资源,具体语法如下. open(要打开的文件,打开方式,打开文件的格式, ...
- lol人物模型提取(三)
提取出来的lol人物模型能让你知道一些有趣的信息,比如说给英雄量个身高啥的. 经测量,佐伊的身高应大于1m60,比想象中的着实高不少啊. 然后还应该把这个模型镜像对称一下,在3dsmax里 ...
- python爬虫从入门到放弃(四)之 Requests库的基本使用(转)
什么是Requests Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库如果你看过上篇文章关于urllib库的使用,你会发现,其 ...
- 异步请求Python库 grequests的应用和与requests库的响应速度的比较
requests库是python一个优秀的HTTP库,使用它可以非常简单地执行HTTP的各种操作,例如GET.POST等.不过,这个库所执行的网络请求都是同步了,即cpu发出请求指令后,IO执行发送和 ...
- c#对xml的操作
操作xml可以通过XElement对象,比较方便的使用列举以下几点: 把字符串转变成XElement,保存成xml文件,加载xml文件: //把字符串解析成XElement对象 string str ...
- bzoj4555-求和
题目 \(S(i,j)\)表示第二类斯特林数,求: \[ f(n)=\sum _{i=0}^n\sum _{j=0}^iS(i,j)*2^j*j! \] 分析 公式推理很简单,关键是用到了第二类斯特林 ...