对于一棵 最大线段树, 每个节点包含一个额外的 max 属性,用于存储该节点所代表区间的最大值。

设计一个 modify 的方法,接受三个参数 root、 index 和 value。该方法将 root 为跟的线段树中 [startend] = [indexindex] 的节点修改为了新的 value ,并确保在修改后,线段树的每个节点的 max 属性仍然具有正确的值。

注意事项

在做此题前,最好先完成线段树的构造和 线段树查询这两道题目。

您在真实的面试中是否遇到过这个题?

Yes
样例

对于线段树:

                      [1, 4, max=3]
/ \
[1, 2, max=2] [3, 4, max=3]
/ \ / \
[1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=3]

如果调用 modify(root, 2, 4), 返回:

                      [1, 4, max=4]
/ \
[1, 2, max=4] [3, 4, max=3]
/ \ / \
[1, 1, max=2], [2, 2, max=4], [3, 3, max=0], [4, 4, max=3]

 调用 modify(root, 4, 0), 返回:

                      [1, 4, max=2]
/ \
[1, 2, max=2] [3, 4, max=0]
/ \ / \
[1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=0] 思路:首先清楚最大线段树的定义,然后,还是利用线段树的性质,分析清楚基准情形,利用递归来求解。
     使用递归,虽然速度慢了些,但对于复杂问题,理解起来更容易,思路更清晰。
         
     先找到index所在叶子节点,并修改该叶子节点的值,然后再从下往上依次更新其父节点的max值。
/**
* Definition of SegmentTreeNode:
* class SegmentTreeNode {
* public:
* int start, end, max;
* SegmentTreeNode *left, *right;
* SegmentTreeNode(int start, int end, int max) {
* this->start = start;
* this->end = end;
* this->max = max;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
*@param root, index, value: The root of segment tree and
*@ change the node's value with [index, index] to the new given value
*@return: void
*/
/*
思路:首先清楚最大线段树的定义,然后,还是利用线段树的性质,分析清楚基准情形,
利用递归来求解。
使用递归,虽然速度慢了些,但对于复杂问题,理解起来更容易,思路更清晰。 先找到index所在叶子节点,并修改该叶子节点的值,然后再从下往上依次更新其父节点的max。
*/
void modify(SegmentTreeNode *root, int index, int value) {
// write your code here if(root==NULL){
return;
} if(index>root->end||index<root->start){
return;
} if(index==root->start&&root->start==root->end){
root->max=value;
return;
} modify(root->left,index,value);
modify(root->right,index,value); root->max=max(root->left->max,root->right->max);
}
};
 

Lintcode---线段树修改的更多相关文章

  1. 【题解】P4247 [清华集训]序列操作(线段树修改DP)

    [题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...

  2. lintcode:线段树的修改

    线段树的修改 对于一棵 最大线段树, 每个节点包含一个额外的 max 属性,用于存储该节点所代表区间的最大值. 设计一个 modify 的方法,接受三个参数 root. index 和 value.该 ...

  3. lintcode:线段树的查询

    线段树的查询 对于一个有n个数的整数数组,在对应的线段树中, 根节点所代表的区间为0-n-1, 每个节点有一个额外的属性max,值为该节点所代表的数组区间start到end内的最大值. 为Segmen ...

  4. HDU 4348 To the moon 可持久化线段树,有时间戳的区间更新,区间求和

    To the moonTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.a ...

  5. 主席树(可持久化线段树) 静态第k大

    可持久化数据结构介绍 可持久化数据结构是保存数据结构修改的每一个历史版本,新版本与旧版本相比,修改了某个区域,但是大多数的区域是没有改变的, 所以可以将新版本相对于旧版本未修改的区域指向旧版本的该区域 ...

  6. Java线段树

    线段树不是完全二叉树,是平衡二叉树 堆也是平衡二叉树 堆满二叉树: h层,一共有2^h-1个节点(大约是2^h) 最后一层(h-1层)有2^(h-1)个节点 最后一层的节点数大致等于前面所有层节点之和 ...

  7. 线段树 by yyb

    线段树 by yyb Type1 维护特殊信息 1.[洛谷1438]无聊的数列 维护一个数列,两种操作 1.给一段区间加上一个等差数列 2.单点询问值 维护等差数列 不难发现,等差数列可以写成\(ad ...

  8. BZOJ4785 ZJOI2017树状数组(概率+二维线段树)

    可以发现这个写挂的树状数组求的是后缀和.find(r)-find(l-1)在模2意义下实际上查询的是l-1~r-1的和,而本来要查询的是l~r的和.也就是说,若结果正确,则a[l-1]=a[r](mo ...

  9. BZOJ.3252.攻略(贪心 长链剖分/线段树)

    题目链接 贪心,每次选价值最大的一条到根的链.比较显然(不选白不选). 考虑如何维护这个过程.一个点的价值选了就没有了,而它只会影响它子树里的点,可以用DFS序+线段树修改.而求最大值也可以用线段树. ...

  10. HDU 3974 Assign the task(简单线段树)

    Assign the task Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. css排版之-标准文档流

    标准流指的是在不使用其他的与排列和定位相关的特殊CSS规则时,各种元素的排列规则.HTML文档中的元素可以分为两大类:行内元素和块级元素.       1.行内元素不占据单独的空间,依附于块级元素,行 ...

  2. (转)JS中的对象

    1.对象 要有对象, 就先要有创建对象的方法. 在C++/Java等语言, 这个方法就是实例化XXX类的一个实例xxx.而在JavaScript的世界里实际没有类的东西, 当然仍然可以用"类 ...

  3. nor flash 和nand flash 的区别

    ROM和RAM指的都是半导体存储器,ROM是Read Only Memory的缩写,RAM是Random Access Memory的缩写.ROM在系统停止供电的时候仍然可以保持数据,而RAM通常都是 ...

  4. CountDownLatch用法---等待多个线程执行完才执行

    CountDownLatch用法---等待多个线程执行完才执行 CountDownLatch用法---等待多个线程执行完才执行 CountDownLatch用法---等待多个线程执行完才执行 Coun ...

  5. Setup JIRA Service Desk 3.9.2 on Oracle Linux 6.8

    OS Oracle Linux 6.8 V138414-01.iso Database mysql5.6.30 MySQL-5.6.30-1.el6.x86_64.rpm-bundle.tar JIR ...

  6. 如何在form初始化时自动隐藏FOLDER列

    方法1:直接设定PROMPT列和数据列ITEM的VISIBLE属性为No 方法2:在WHEN-NEW-FORM-INSTANCE触发器里: l_old_itm := :system.cursor_it ...

  7. PASCAL 的开源工具

    PASCAL 的开源工具: 1)free pascal  代码编译器     http://www.freepascal.org/ 2)lazarus 图形界面开发工具   http://www.la ...

  8. [转]SQL SERVER 函数组合实现oracle的LPAD函数功能

    本文转自:http://blog.csdn.net/a475701239/article/details/8295976      在写存储过程的时候遇到个问题,就是 将数字转成4位右对齐的字符串,不 ...

  9. iOS:网页视图控件UIWebView的详解

    网页视图控件:UIWebView 功能:它是继承于UIView的,是一个内置的浏览器控件,以用来浏览从网络下载下来的网页或者本地上加载下来的文档. 枚举: //网页视图导航类型 typedef NS_ ...

  10. 较详细的介绍JNI

    JNI其实是Java Native Interface的简称,也就是java本地接口.它提供了若干的API实现了和Java和其他语言的通信(主要是C&C++).也许不少人觉得Java已经足够强 ...