UVa 1220 - Party at Hali-Bula(树形DP)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3661
题意:
公司里有n(n≤200)个人形成一个树状结构,即除了老板之外每个员工都有唯一的直属上司。
要求选尽量多的人,但不能同时选择一个人和他的直属上司。问:最多能选多少人,以及在人数最多的前提下方案是否唯一。
分析:
本题几乎就是树的最大独立集问题,不过多了一个要求:判断唯一性。
一、设d(u,0)和f(u,0)表示以u为根的子树中,不选u点能得到的最大人数以及方案唯一性(f(u,0)=1表示唯一,0表示不唯一)。
二、设d(u,1)和f(u,1)表示以u为根的子树中,选u点能得到的最大人数以及方案唯一性。相应地,状态转移方程也有两套。
三、d(u,1)的计算:因为选了u,所以u的子结点都不能选,故d(u,1) = sum{d(v,0) | v是u的子结点}。当所有f(v,0)=1时f(u,1)=1。
四、d(u,0)的计算:因为u没有选,所以每个子结点v可选可不选,即d(u,0) = sum{ max(d(v,0), d(v,1)) }。
什么情况下方案是唯一的呢?首先,如果某个d(v,0)和d(v,1)相等,则不唯一;
其次,如果max取到的那个值对应的f=0,方案也不唯一(如d(v,0) > d(v,1) 且f(v,0)=0,则f(u,0)=0)。
代码:
#include <cstdio>
#include <map>
#include <string>
#include <vector>
using namespace std; const int UP = + ;
int cid, d[UP][]; // d数组表示以f为根的子树中,选或不选f点能得到的最大人数
bool u[UP][]; // u数组表示以f为根的子树中,选或不选f点的方案唯一性
map<string, int> M;
vector<int> son[UP]; int id(char* s){
if(M.count(s)) return M[s];
return M[s] = cid++;
} int dp(int f, int p){
d[f][p] = p;
u[f][p] = true;
for(int i = ; i < son[f].size(); i++){
int b = son[f][i];
if(p == ){
d[f][] += dp(b, );
if(!u[b][]) u[f][] = false;
}
else{
d[f][] += max(dp(b, ), dp(b, ));
if(d[b][] == d[b][]) u[f][] = false;
else if(d[b][] > d[b][] && !u[b][]) u[f][] = false;
else if(d[b][] > d[b][] && !u[b][]) u[f][] = false;
}
}
return d[f][p];
} int main(){
int n;
char f[], b[];
while(scanf("%d", &n) && n){
cid = ; M.clear();
for(int i = ; i < n; i++) son[i].clear(); scanf("%s", f); id(f);
for(int i = ; i < n; i++){
scanf("%s%s", b, f);
son[id(f)].push_back(id(b));
} printf("%d ", max(dp(, ), dp(, )));
bool ok = (d[][]>d[][]&&u[][]) || (d[][]>d[][]&&u[][]);
printf("%s\n", ok ? "Yes" : "No");
}
return ;
}
UVa 1220 - Party at Hali-Bula(树形DP)的更多相关文章
- UVa 1220 Party at Hali-Bula (树形DP,最大独立集)
题意:公司有 n 个人形成一个树形结构,除了老板都有唯一的一个直系上司,要求选尽量多的人,但不能同时选一人上和他的直系上司,问最多能选多少人,并且是不是唯一的方案. 析:这个题几乎就是树的最大的独立集 ...
- UVA - 1220 Party at Hali-Bula (树形DP)
有 n 个员工,n-1个从属关系. 不能同时选择某个员工和他的直接上司,问最多可以选多少人,以及选法是否唯一. 树上的最大独立集问题.只不过多了一个判断唯一性. dp[u][0]表示不选这个点的状态, ...
- 【UVA 1380】 A Scheduling Problem (树形DP)
A Scheduling Problem Description There is a set of jobs, say x1, x2,..., xn <tex2html_verbatim_ ...
- UVA Live Archive 4015 Cave (树形dp,分组背包)
和Heroes Of Might And Magic 相似,题目的询问是dp的一个副产物. 距离是不好表示成状态的,但是可以换一个角度想,如果知道了从一个点向子树走k个结点的最短距离, 那么就可以回答 ...
- UVa 10859 - Placing Lampposts 树形DP 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVA - 1218 Perfect Service(树形dp)
题目链接:id=36043">UVA - 1218 Perfect Service 题意 有n台电脑.互相以无根树的方式连接,现要将当中一部分电脑作为server,且要求每台电脑必须连 ...
- 树形DP UVA 1292 Strategic game
题目传送门 /* 题解:选择一个点,它相邻的点都当做被选择,问最少选择多少点将所有点都被选择 树形DP:dp[i][0/1]表示当前点选或不选,如果选,相邻的点可选可不选,取最小值 */ /***** ...
- uva 1292 树形dp
UVA 1292 - Strategic game 守卫城市,城市由n个点和n-1条边组成的树,要求在点上安排士兵,守卫与点相连的边.问最少要安排多少士兵. 典型的树形dp.每一个点有两个状态: dp ...
- UVA 1484 - Alice and Bob's Trip(树形DP)
题目链接:1484 - Alice and Bob's Trip 题意:BOB和ALICE这对狗男女在一颗树上走,BOB先走,BOB要尽量使得总路径权和大,ALICE要小,可是有个条件,就是路径权值总 ...
随机推荐
- FZU 2138——久违的月赛之一——————【贪心】
久违的月赛之一 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- Docker 教程
转自:http://www.runoob.com/docker/docker-tutorial.html Docker 教程
- MySql数据库与JDBC编程三
多表连接查询(两种规范 SQL92和SQL99) SQL92规范: 等值连接,非等值连接,外连接,广义笛卡儿积连接 多个表都放在from后,,连接条件放在where后,条件要求两列值相等,则为等值连接 ...
- IIS调试技术之 Debug Diagnostic (调试诊断)
IIS 调试技术之 Debug Diagnostic (调试诊断) 1 概述 1.1 文档简介 系统出现错误或崩溃,免不了要进行调试.调试能进行的前提是错误能重现,但实际上要重现一个错误有 ...
- mybatis学习之分页
分页一般分为物理分页:先查询所有值再分页输出,逻辑分页:直接分页查询输出,mybatis支持物理分页,如下: 1.物理分页: mapper映射: <select id="findStu ...
- 简单的js定时器
var flag = 0; var time = 0; var stoptime = setInterval(function(){ if (flag<9999999) { //执行定时器 } ...
- Filter的常见应用
1.字符编码过滤器 实现功能,在a.jsp中填写用户名提交到b.jsp,在b.jsp中读取参数名. a.jsp <body> <form action="encoding/ ...
- ElementUI组件库常见方法及问题汇总(持续更新)
本文主要介绍在使用ElementUI组件库的时候,常遇见的问题及使用到的方法,汇总记录便于查找. 1.表单 阻止表单的默认提交 <!-- @submit.native.prevent --> ...
- Java基础重点知识之欣欣向然
题目: 第一题:二重循环: public class Text01 { //完成歌曲排序的效果 public static void main(String[] args) { String[] zi ...
- 完整SQL分页存储过程(支持多表联接)
http://www.cnblogs.com/andiki/archive/2009/03/24/1420289.html Code/********************************* ...