这题就是找合取范式比较麻烦

AND   1    0必须取自己来造成矛盾,1必须取1

AND   0    1必须取0

OR     1     0必须取1

OR     0     1必须取自己来造成矛盾

XOR  1      0必须取1,1必须取0

XOR   0     1必须取1,0必须取0

然后就是tarjan扫一遍判断

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<cassert>
#include<iomanip>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define C 0.5772156649
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f; stack<int>s;
vector<int>v[N];
int ins[N],inans[N];
int dfn[N],low[N];
int num,index;
void tarjan(int u)
{
ins[u]=;
dfn[u]=low[u]=++index;
s.push(u);
for(int i=;i<v[u].size();i++)
{
int x=v[u][i];
if(!dfn[x])
{
tarjan(x);
low[u]=min(low[u],low[x]);
}
else if(ins[x]==)low[u]=min(low[u],dfn[x]);
}
if(dfn[u]==low[u])
{
++num;
while(!s.empty()){
int k=s.top();
s.pop();
ins[k]=;
inans[k]=num;
if(k==u)break;
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
int n,m;
cin>>n>>m;
memset(ins,,sizeof ins);
memset(inans,,sizeof inans);
memset(dfn,,sizeof dfn);
memset(low,,sizeof low);
num=index=;
while(!s.empty())s.pop();
for(int i=;i<*n;i++)v[i].clear();
while(m--){
int a,b,c;
string s;
cin>>a>>b>>c>>s;
if(s[]=='A')
{
if(c)
{
v[a].push_back(a+n);
v[b].push_back(b+n);
v[a+n].push_back(b+n);
v[b+n].push_back(a+n);
}
else
{
v[a+n].push_back(b);
v[b+n].push_back(a);
}
}
else if(s[]=='O')
{
if(c)
{
v[a].push_back(b+n);
v[b].push_back(a+n);
}
else
{
v[a].push_back(b);
v[b].push_back(a);
v[a+n].push_back(a);
v[b+n].push_back(b);
}
}
else
{
if(c)
{
v[a].push_back(b+n);
v[b].push_back(a+n);
v[a+n].push_back(b);
v[b+n].push_back(a);
}
else
{
v[a].push_back(b);
v[b].push_back(a);
v[a+n].push_back(b+n);
v[b+n].push_back(a+n);
}
}
}
for(int i=;i<*n;i++)
if(!dfn[i])
tarjan(i);
bool f=;
for(int i=;i<n;i++)
if(inans[i]==inans[i+n])
{
f=;
break;
}
if(f)cout<<"NO"<<endl;
else cout<<"YES"<<endl;
return ;
}
/******************** ********************/

poj3678 2- sat的更多相关文章

  1. 学习笔记(two sat)

    关于two sat算法 两篇很好的论文由对称性解2-SAT问题(伍昱), 赵爽 2-sat解法浅析(pdf). 一些题目的题解 poj 3207 poj 3678 poj 3683 poj 3648 ...

  2. 多边形碰撞 -- SAT方法

    检测凸多边形碰撞的一种简单的方法是SAT(Separating Axis Theorem),即分离轴定理. 原理:将多边形投影到一条向量上,看这两个多边形的投影是否重叠.如果不重叠,则认为这两个多边形 ...

  3. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  4. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  5. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  6. HIT 1917 2—SAT

    题目大意:一国有n个党派,每个党派在议会中都有2个代表, 现要组建和平委员会,要从每个党派在议会的代表中选出1人,一共n人组成和平委员会. 已知有一些代表之间存在仇恨,也就是说他们不能同时被选为和平委 ...

  7. hdu 4421 和poj3678类似二级制操作(2-sat问题)

    /* 题意:还是二进制异或,和poj3678类似 建边和poj3678一样 */ #include<stdio.h> #include<string.h> #include&l ...

  8. 2 - sat 模板(自用)

    2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一  POJ 3207 Ikki's Story IV ...

  9. SAT考试里最难的数学题? · 三只猫的温暖

    问题 今天无意中在Quora上看到有人贴出来一道号称是SAT里最难的一道数学题,一下子勾起了我的兴趣.于是拿起笔来写写画画,花了差不多十五分钟搞定.觉得有点意思,决定把解题过程记下来.原帖的图太小,我 ...

  10. 世界碰撞算法原理和总结(sat gjk)

    序言 此文出于作者的想法,从各处文章和论文中,总结和设计项目中碰撞结构处理方法.如有其它见解,可以跟作者商讨.(杨子剑,zijian_yang@yeah.net). 在一个世界中,有多个物体,物体可以 ...

随机推荐

  1. 转!!Java的三种代理模式

    转自 http://www.cnblogs.com/cenyu/p/6289209.html 1.代理模式 代理(Proxy)是一种设计模式,提供了对目标对象另外的访问方式;即通过代理对象访问目标对象 ...

  2. mysql 中sum (if())与case

    先来一个简单的sum select sum(qty) as total_qty from inventory_product group by product_id 这样就会统计出所有product的 ...

  3. Angular学习笔记—HttpClient (转载)

    HttpClientModule 应用 导入新的 HTTP Module import {HttpClientModule} from '@angular/common/http'; @NgModul ...

  4. tomcat 6 利用ExpiresFilter控制静态文件缓存

    在tomcat7下面 利用ExpiresFilter来控制静态文件缓存很方便,按照tomcat官网手动配置即可: 但是tomcat6 里面并没有 org.apache.catalina.filters ...

  5. C++异常安全、copy and swap

    异常安全的代码是指,满足两个条件 1异常中立性 : 是指当你的代码(包括你调用的代码)引发异常时,这个异常 能保持原样传递到外层调用代码.(异常中立,就是指任何底层的异常都会抛出到上层,也就相当于是异 ...

  6. Django中间件(含Django运行周期流程图)

    Django中的中间件(含Django完整生命周期图) Django中间件简介 django 中的中间件(middleware),在django中,中间件其实就是一个类,在请求到来和结束后,djang ...

  7. T25健身视频全集+课表

    http://jianfei.39.net/thread-3639251-1.html T25健身视频全集+课表 强度适中 不伤膝盖! [复制链接]     zytttt         主题 好友 ...

  8. Spring框架学习之IOC(二)

    Spring框架学习之IOC(二) 接着上一篇的内容,下面开始IOC基于注解装配相关的内容 在 classpath 中扫描组件 <context:component-scan> 特定组件包 ...

  9. 用HAProxy和KeepAlived构建高可用的反向代理系统

    对于访问量较大的网站来说,随着流量的增加单台服务器已经无法处理所有的请求,这时候需要多台服务器对大量的请求进行分流处理,即负载均衡.而如果实现负载均衡,必须在网站的入口部署服务器(不只是一台)对这些请 ...

  10. 编写Tesseract的Python扩展

    Tesseract是一个开源的OCR(光学字符识别)引擎,用于识别并输出图片中的文字.虽然和商业软件比起来识别精度不算很高,但是如果你要寻找免费开源的OCR引擎,可能Tesseract就是唯一的选择了 ...