【题目大意】

给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度。

【manacher知识点】

①mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j]。

②当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以 S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能一个一个匹配了。

③对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
const int MAXN=+;
char str[MAXN],s[MAXN*];
int p[MAXN*]; void init()
{
s[]='$';s[]='#';
int j=;
for (int i=;str[i];i++)
{
s[++j]=str[i];
s[++j]='#';
}
//cout<<s<<endl;
} void solve()
{
int mx=,mxid=;
memset(p,,sizeof(p));
for (int i=;s[i];i++)
{
if (mx>i) p[i]=(p[*mxid-i]<(mx-i)?p[*mxid-i]:(mx-i));
else p[i]=;
while(s[i-p[i]]==s[i+p[i]]) p[i]++;
if (i+p[i]>mx)
{
mx=i+p[i];
mxid=i;
}
}
} int getans()
{
int len=strlen(str)*+;
int ans=-;
for (int i=;i<len;i++) ans=max(ans,p[i]);
ans--;
return ans;
} int main()
{
while (scanf("%s",str)!=EOF)
{
init();
solve();
cout<<getans()<<endl;
}
return ;
}

【manacher】HDU3068-最长回文的更多相关文章

  1. Manacher(hdu3068最长回文)

    浅谈manacher算法 manacher算法是我在网上无意中找到的,主要是用来求某个字符串的最长回文子串. 不过网上的版本还不太成熟,我就修改了下. 不要被manacher这个名字吓倒了,其实man ...

  2. hdu3068最长回文(Manacher算法)

    简单来说这是个很水的东西.有点dp的思想吧.推荐两个博客,很详细. http://blog.csdn.net/xingyeyongheng/article/details/9310555 http:/ ...

  3. HDU3068 最长回文 Manacher算法

    Manacher算法是O(n)求最长回文子串的算法,其原理很多别的博客都有介绍,代码用的是clj模板里的,写的确实是异常的简洁,现在的我只能理解个大概,下面这个网址的介绍比较接近于这个模板,以后再好好 ...

  4. hdu3068 最长回文 manacher

    给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等 manacher裸题 #include<stdio. ...

  5. HDU3068 最长回文 MANACHER+回文串

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符 ...

  6. HDU3068:最长回文(Manacher模板)

    最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. HDU3068 最长回文(manacher模板

    给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等 Input输入有多组case,不超过120组,每组输入为一 ...

  8. [hdu3068 最长回文]Manacher算法,O(N)求最长回文子串

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 题意:求一个字符串的最长回文子串 思路: 枚举子串的两个端点,根据回文串的定义来判断其是否是回文 ...

  9. HDU3068最长回文 题解

    题目大意: 求字符串的最长回文子串的长度. 思路: Manacher板题,Hash可能会T.要学习Manacher,可参考https://www.felix021.com/blog/read.php? ...

  10. Manacher算法----最长回文子串

    题目描述 给定一个字符串,求它的最长回文子串的长度. 分析与解法 最容易想到的办法是枚举所有的子串,分别判断其是否为回文.这个思路初看起来是正确的,但却做了很多无用功,如果一个长的子串包含另一个短一些 ...

随机推荐

  1. idea 调试远程tomcat

    # ----- Execute The Requested Command ----------------------------------------- JAVA_OPTS="-age ...

  2. 3.0docker操作

    登录镜像资源 docker login daocloud.io username: password: docker login : 登陆到一个Docker镜像仓库,如果未指定镜像仓库地址,默认为官方 ...

  3. 第三周main参数传递-1 课堂测试

    课堂测试 main参数传递-1 测试 参考 http://www.cnblogs.com/rocedu/p/6766748.html#SECCLA 在Linux下完成"求命令行传入整数参数的 ...

  4. Django2.0如何配置urls文件

    刚开始学django,创建的第一个工程无法启动,后来发现是由于教程是针对较低版本的Django,我用的是Django2.0和Python3.6,两个都是发文为止的最新版本,urls文件设置方法和旧版本 ...

  5. [收集]关于MSSQL数据库的一些查询

    sqlserver快速查找所有存储过程中是否包含某字符 --将XXXX替换成你要查找的内容 select name from sysobjects o, syscomments s where o.i ...

  6. UIResponder简介

    1.简介 在使用设备的时候我们大多时候是但手指触摸控件了进行的,比如点击密码按钮解锁,上下浏览网页等动作.你肯定也摇动过iphone抢红包和***等等,我们的系统可以处理这些事件则都需要去使用UIRe ...

  7. Python初学--字符串

    ASCII.Unicode和UTF-8的关系 在计算机内存中,统一使用Unicode编码,当需要保存到硬盘或者需要传输的时候,就转换为UTF-8编码 记事本编辑的时候,从文件读取的UTF-8字符被转换 ...

  8. POJ 3308

    http://poj.org/problem?id=3308 考虑答案不是乘积而是和的做法, 因为对于每一个伞兵我们要么在这行内安装大炮消灭它 要么在这列中安装大炮消灭它,所以容易看出这是一个最小边覆 ...

  9. linux命令(14):ifup/ifdown/ip addr命令

    开启网卡:ifup eth0 关闭网卡:ifdown eth0 查看网卡接入状态:ip addr[可查看哪块网卡up/down状态]

  10. java静态类与非静态类区别

    java静态与非静态区别   这里的静态,指以static关键字修饰的,包括类,方法,块,字段. 非静态,指没有用static 修饰的. 静态有一些特点: 1.全局唯一,任何一次的修改都是全局性的影响 ...