Triangle
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 7625   Accepted: 2234

Description

Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

Source

 
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
using namespace std; struct Point
{
int x,y;
Point(int _x = , int _y = )
{
x = _x;
y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
int operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
void input()
{
scanf("%d%d",&x,&y);
}
};
int dist2(Point a,Point b)
{
return (a-b)*(a-b);
}
const int MAXN = ;
Point list[MAXN];
int Stack[MAXN],top;
bool _cmp(Point p1,Point p2)
{
int tmp = (p1-list[])^(p2-list[]);
if(tmp > )return true;
else if(tmp == && dist2(p1,list[]) <= dist2(p2,list[]))
return true;
else return false;
}
void Graham(int n)
{
Point p0;
int k = ;
p0 = list[];
for(int i = ;i < n;i++)
if(p0.y > list[i].y || (p0.y == list[i].y && p0.x > list[i].x))
{
p0 = list[i];
k = i;
}
swap(list[],list[k]);
sort(list+,list+n,_cmp);
if(n == )
{
top = ;
Stack[] = ;
return;
}
if(n == )
{
top = ;
Stack[] = ;
Stack[] = ;
return;
}
Stack[] = ;
Stack[] = ;
top = ;
for(int i = ;i < n;i++)
{
while(top > && ((list[Stack[top-]]-list[Stack[top-]])^(list[i]-list[Stack[top-]])) <= )
top--;
Stack[top++] = i;
}
}
//旋转卡壳,求两点间距离平方的最大值
int rotating_calipers(Point p[],int n)
{
int ans = ;
Point v;
int cur = ;
for(int i = ;i < n;i++)
{
int j = (i+)%n;
int k = (j+)%n;
while(j != i && k != i)
{
ans = max(ans,abs((p[j]-p[i])^(p[k]-p[i])) );
while( ( (p[i]-p[j])^(p[(k+)%n]-p[k]) ) < )
k = (k+)%n;
j = (j+)%n;
}
}
return ans;
}
Point p[MAXN];
int main()
{
int n;
while(scanf("%d",&n) == )
{
if(n == -)break;
for(int i = ;i < n;i++)
list[i].input();
Graham(n);
for(int i = ;i < top;i++)
p[i] = list[Stack[i]];
int ans = rotating_calipers(p,top);
printf("%.2lf\n",ans/2.0);
}
return ;
}
 
 

POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)的更多相关文章

  1. hdu 3934&&poj 2079 (凸包+旋转卡壳+求最大三角形面积)

    链接:http://poj.org/problem?id=2079 Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissio ...

  2. poj 2079 Triangle,旋转卡壳求点集的最大三角形

    给出一个点集,求顶点在点集中的最大的三角形面积. 我们知道这三角形的三个点肯定在凸包上,我们求出凸包之后不能枚举,由于题目n比較大,枚举的话要O(n^3)的数量级,所以採用旋转卡壳的做法: 首先枚举三 ...

  3. poj 2079 Triangle(旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 8917   Accepted: 2650 Descript ...

  4. bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积

    在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...

  5. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  6. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  7. CodeForces - 682E: Alyona and Triangles(旋转卡壳求最大三角形)

    You are given n points with integer coordinates on the plane. Points are given in a way such that th ...

  8. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

  9. Code Chef GEOCHEAT(凸包+旋转卡壳+随机化)

    题面 传送门 题解 以下记\(S_i=\{1,2,3,...,i\}\) 我们先用凸包+旋转卡壳求出直径的长度,并记直径的两个端点为\(i,j\)(如果有多条直径随机取两个端点) 因为这个序列被\(r ...

  10. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

随机推荐

  1. python中的enumerate获取迭代元素的下标

    以前迭代的时候,需要获取次数都是如下格式: index=1 for node in nodes: if index==3: continue print(node.text_content())ind ...

  2. hadoop环境搭建编译

    安装: JDK1.7+ maven 3.0 or later findbugs 1.3.9 protocolBuffer 2.5.0 cmake 2.6 zlib-devel openssl-deve ...

  3. HA集群

    //硬件准备: .两个机器,相同系统 .网卡ip为:aming 192.168.11.24 aming1 192.168.11.23 //实验准备: . hostname : aming , amin ...

  4. maven项目的多级目录

    刚刚把一个开源的项目变成maven项目来进行管理,由于是多级的目录(以前配置的都是单级的目录),所以记录一下pom文件是怎么配置的. 一.目录结构 如下,maven的结构图,红字是表示完整的项目

  5. java字节码指令列表(转)

    字节码 助记符 指令含义 0x00 nop 什么都不做 0x01 aconst_null 将null推送至栈顶 0x02 iconst_m1 将int型-1推送至栈顶 0x03 iconst_0 将i ...

  6. HDU-4255

    A Famous Grid Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  7. [编程题] 合唱团 && 地闹逃脱

    1. 合唱团 有 n 个学生站成一排,每个学生有一个能力值,牛牛想从这 n 个学生中按照顺序选取 k 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这 k 个学生的能力值的乘积最大,你能返回最 ...

  8. CentOS 6.4 系统上如何安装 tomcat 8

    CentOS 6.4 系统上如何安装 tomcat 8 本文将详细讲解在Linux系统上如何安装tomcat,tomcat是没有32位和64位之分的. 1.下载tomcat 首先我们肯定要先下载tom ...

  9. textarea 内容不可编辑 自是适应高度 只读相关属性配置

    不可编辑: <textarea disabled="disabled"></textarea> 如果仅仅用于禁止输入(只读,但有用),使用readonly属 ...

  10. Java空对象设计模式

    有时候我们的代码中为避免 NullPointerException 会出现很多的对Null的判断语句,而这些语句一旦多起来,我们的代码就会变的惨不忍睹,因此我们引入了空对象模式(null object ...