【lydsy1407】拓展欧几里得求解不定方程+同余方程
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407
题意:
有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i]个山洞,到这个山洞住下来。
每个野人的寿命为l[i],问至少需要多少个山洞,才能让野人在有生之年永远不住在同一个山洞。
题解:
原本不会拓展欧几里得和同余方程,在这里尽量详细地写一下由这题学到的东西。
我原本是从网上看各类题解然后打的,因为不理解和某些题解上的错误,导致调了很久。
下面写我的题解,如有错误,敬请指出。
设山洞的数量为m。
首先,对于n=2时,若相遇,则得同余方程 c[i]+x*p[i] = c[j]+x*p[j] (mod m)
移项,得:(p[i]-p[j])*x=c[j]-c[i] (mod m)
即:(p[i]-p[j])*x + m*y = c[j]-c[i]
则由于p[i]-p[j]、m、c[j]-c[i]已知,该方程相当于 a*x+b*y=c,可用拓展欧几里得求解。
若该方程无解,或x小于l[i]且x小于l[j](注意是并且的关系,因为一个死了一个活着也是不能相遇的),则不会相遇。
所以,由于n<=15,可以从max(c[i])开始枚举m(因为开始时野人都不在同一个山洞,max(c[i])一定大于等于n),两两匹配,若都不能相遇,则当前的m值为最小整数解。
相关: 用拓展欧几里德算法求不定方程 a*x + b*y = c:
推荐一篇很好的博文:http://www.cnblogs.com/Rinyo/archive/2012/11/25/2787419.html
如果c不是gcd(a,b)的倍数,则该方程无解。
证明:
设g=gcd(a,b),则a=a'g,b=b'g
ax+by=c可化为g(a'x+b'y)=c
由于g、(a'x+b'y)、c都是整数,所以c必然是g的倍数。
拓展欧几里得:
int exgcd(int a,int b)
{
if (b == ) { x=,y=; return a; }
int t = exgcd (b,a%b,x,y);
int x0 = x , y0 = y;
x = y0; y = x0-(a/b)*y0;
return t;
}
证明:
ax + by = gcd(a,b)
bx'+(a%b)y'=gcd(b,a%b)
因为gcd(a,b) = gcd(b,a%b)
所以ax+by = bx'+(a%b)y'
代入a%b = a - ⌊a/b⌋*b (⌊⌋是向下取整符号)
ax + by = bx' + (a - ⌊a/b⌋*b)y'
ax + by = ay' + b(x'-⌊a/b⌋y')
所以: x = y' y = x'-⌊a/b⌋*y'
回溯即可得出答案。
此处求出的x和y是一组可行解,可以利用通式
x = x' + k*b
y = y' - k*a
求出最小整数解。
注意:ax + by = c 求的是c是gcd(a,b)的倍数时的解。
方法一:
方程两边同时除以g
a'=a/g b'=b/g c'=c/g
得a'x+b'y=c'
用拓展欧几里德算法求解a'x'+b'y'=1
则 x = x'*c' y = y'*c'
这时,在用通式求最小整数解时加减的应是b'
方法二:
我们可以直接求出ax’ + by’ =gcd(a,b)
则 x = x'*c/g y = y' * c/g
这时应注意,在求通式求最小整数解加减的仍应是b/g。(注意!)
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; const int N=,M=;
int n;
int cc[N],p[N],l[N]; int maxx(int x,int y) {return x>y ? x:y;}
int minn(int x,int y) {return x<y ? x:y;}
int myabs(int x) {return x> ? x:-x;} int gcd(int a,int b)
{
if(b==) return a;
return gcd(b,a%b);
} void exgcd(int a,int b,int &x,int &y)
{
if(b==) {x=,y=;return ;}
exgcd(b,a%b,x,y);
int x0=x,y0=y;
x=y0;y=x0-(a/b)*y0;
return ;
} bool check(int m)
{
for(int i=;i<=n-;i++)
for(int j=i+;j<=n;j++)
{
int a=p[i]-p[j];
int b=m;
int c=cc[j]-cc[i]; int g=gcd(a,b);
if(c%g) continue;
a/=g;b/=g;c/=g;//b在此处可能变为负
int x,y;
exgcd(a,b,x,y);
x=x*c;y=y*c;
while(x>) x-=myabs(b);
while(x<=) x+=myabs(b);
if(x<=minn(l[i],l[j])) return ;//
}
return ;
} int main()
{
scanf("%d",&n);
int mx=n;
for(int i=;i<=n;i++)
{
scanf("%d%d%d",&cc[i],&p[i],&l[i]);
mx=maxx(mx,cc[i]);
}
for(int i=mx;i<=M;i++)
{
if(check(i)) {printf("%d\n",i);break;}
}
return ;
}
【lydsy1407】拓展欧几里得求解不定方程+同余方程的更多相关文章
- POJ - 2142 The Balance(扩展欧几里得求解不定方程)
d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...
- POJ.2142 The Balance (拓展欧几里得)
POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...
- HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)
设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...
- Looooops(求解同余方程、同余方程用法)【拓展欧几里得】
Looooops(点击) A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...
- ACM数论-欧几里得与拓展欧几里得
ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...
- BZOJ-1407 Savage 枚举+拓展欧几里得(+中国剩余定理??)
zky学长实力ACM赛制测试,和 大新闻(YveH) 和 华莱士(hjxcpg) 组队...2h 10T,开始 分工我搞A,大新闻B,华莱士C,于是开搞: 然而第一题巨鬼畜,想了40min发现似乎不可 ...
- [zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)
Power of Fibonacci Time Limit: 5 Seconds Memory Limit: 65536 KB In mathematics, Fibonacci numbe ...
- [POJ2115]C Looooops 拓展欧几里得
原题入口 这个题要找到本身的模型就行了 a+c*x=b(mod 2k) -> c*x+2k*y=b-a 求这个方程对于x,y有没有整数解. 这个只要学过拓展欧几里得(好像有的叫扩展欧几里德QA ...
- 51 Nod 1256 乘法逆元(数论:拓展欧几里得)
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...
随机推荐
- 数据库索引(结合B-树和B+树)
数据库索引,是数据库管理系统中一个排序的数据结构以协助快速查询.更新数据库表中数据.索引的实现通常使用B树及其变种B+树. 在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种 ...
- iOS开发CABasicAnimation动画理解
1.CALayer简介 CALayer是个与UIView很类似的概念,同样有backgroundColor.frame等相似的属性,我们可以将UIView看做一种特殊的CALayer.但实际上UIVi ...
- web前端之路 - 开篇
一 web发展历程 了解事物的历史有助于我们渐进式的从发展的思路清楚了解事物的来龙去脉. 这里有一篇网文写得比较清晰和完整:https://www.tianmaying.com/tutorial/we ...
- nargchk函数 matlab【转】
功能说明 验证输入参数的个数 函数语法 msgstring = nargchk(minargs, maxargs, numargs)msgstring = nargchk(minargs, max ...
- BZOJ4765 普通计算姬(分块+树状数组)
对节点按编号分块.设f[i][j]为修改j号点对第i块的影响,计算f[i][]时dfs一遍即可.记录每一整块的sum.修改时对每一块直接更新sum,同时用dfs序上的树状数组维护子树和.查询时累加整块 ...
- CentOS 文本操作命令
1.cat 用于查看纯文本文件,显示行号,加-n参数,适合内容较少的情况 2.more 用于查看纯文本文件,适合内容较多的情况 3.less 用于查看纯文本文件,可以上下翻页 4.head 用于查看纯 ...
- [CF452E]Three strings
题目大意:给你三个字符串$A,B,C$,令$L=min(|A|,|B|,|C|)$,对每个$i\in[1,L]$,求出符合$A_{[a,a+i)}=B_{[b,b+i)}=C_{[c,c+i)}$的三 ...
- BZOJ4827:[AH2017/HNOI2017]礼物——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4827 https://www.luogu.org/problemnew/show/P3723 题面 ...
- cloneNode与事件拷贝
用法: var newNode = oldNode.cloneNode(deep); //deep,布尔值,若为true,则克隆oldNode及其子节点,否则只克隆oldNode本身 关于复制事件 1 ...
- P2075 [NOIP2012T5]借教室 区间更新+二分查找
P2075 [NOIP2012T5]借教室 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 noip2012-tg 描述 在大学期间,经常需要租借教室.大到院 ...