$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数

/** @Date    : 2017-09-26 23:01:05
* @FileName: HDU 2841 容斥 或 反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
LL phi[N];
LL sum[N];
LL mu[N];
int c = 0;
void prime()
{
MMF(phi);
phi[1] = 1;
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!phi[i]) pri[c++] = i, phi[i] = i - 1, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
phi[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
phi[i * pri[j]] = phi[i] * pri[j];
mu[i * pri[j]] = 0;
break;
}
else phi[i * pri[j]] = phi[i] * (pri[j] - 1), mu[i * pri[j]] = -mu[i];
}
}
sum[0] = 0;
for(int i = 1; i < N; i++)
sum[i] = sum[i - 1] + mu[i];
}
int main()
{
prime();
int T;
cin >> T;
while(T--)
{
LL n, m;
cin >> n >> m;
int mi = min(n, m);
LL ans = 0;
for(int i = 1, last; i <= mi; i = last + 1)
{
last = min((n/(n/i)) ,(m/(m/i)));
ans += (n / i) * (m / i) * (sum[last] - sum[i - 1]);
}
cout << ans << endl;
}
return 0;
}

HDU 2841 容斥 或 反演的更多相关文章

  1. HDU 1695 容斥

    又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...

  2. HDU 4135 容斥

    问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...

  3. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  4. HDU 4059 容斥初步练习

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  5. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  6. cf900D. Unusual Sequences(容斥 莫比乌斯反演)

    题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...

  7. bzoj 4671 异或图——容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...

  8. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  9. 【bzoj4671】异或图(容斥+斯特林反演+线性基)

    传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...

随机推荐

  1. C语言:一个能自动生成小学四则运算题目的程序

    完成这个程序,半个小时内完成了,这个程序,可以自动生成小学简易的四则运算,提供菜单让用户选择,然后判断加减乘除,判断答对答错的题目个数,用户同时也可以重新选择继续答题或重新选择或退出程序. 源程序: ...

  2. 【CS231N】6、神经网络动态部分:损失函数等

    一.疑问 二.知识点 1. 损失函数可视化 ​ 损失函数一般都是定义在高维度的空间中,这样要将其可视化就很困难.然而办法还是有的,在1个维度或者2个维度的方向上对高维空间进行切片,例如,随机生成一个权 ...

  3. Java集合技巧

    集合的一些技巧:   需要唯一吗? 需要:Set 需要制定顺序:  需要: TreeSet 不需要:HashSet 但是想要一个和存储一致的顺序(有序):LinkedHashSet 不需要:List ...

  4. SQL语句中order_by_、group_by_、having的用法区别

    order by 从英文里理解就是行的排序方式,默认的为升序. order by 后面必须列出排序的字段名,可以是多个字段名. group by 从英文里理解就是分组.必须有“聚合函数”来配合才能使用 ...

  5. Java中的多线程科普

    如果对什么是线程.什么是进程仍存有疑惑,请先Google之,因为这两个概念不在本文的范围之内. 用多线程只有一个目的,那就是更好的利用cpu的资源,因为所有的多线程代码都可以用单线程来实现.说这个话其 ...

  6. vue 组件 模板中根数据绑定需要指明路径并通信父

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>T ...

  7. Memcache 服务管理脚本

    自定义脚本将memcached作为系统服务启动以及开机启动. 一.编写脚本 在/etc/init.d/目录下新建一个脚本,名称为:memcached.内容如下: vi /etc/init.d/memc ...

  8. ng-include 上ng-controller 无法获取控件

    A.Html内容如下 <div> <div kendo-grid="testGrid" k-options="testOptions"> ...

  9. 静态属性加载到jvm时候就存放在数据共享区,而不是等new后出现

    静态属性加载到jvm时候就存放在数据共享区,而不是等new后出现.他的生命周期是 jvm结束 才会消失,一般的方法属性是对象结束后 就会消失.

  10. DAY3-Python学习笔记

    1.元类:动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的,不是定义死了,而是可以随时随地添加的 type():查看一个类型或变量的类型又可以创建出新的类型 c ...