HDU 2841 容斥 或 反演
$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数
/** @Date : 2017-09-26 23:01:05
* @FileName: HDU 2841 容斥 或 反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
LL phi[N];
LL sum[N];
LL mu[N];
int c = 0;
void prime()
{
MMF(phi);
phi[1] = 1;
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!phi[i]) pri[c++] = i, phi[i] = i - 1, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
phi[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
phi[i * pri[j]] = phi[i] * pri[j];
mu[i * pri[j]] = 0;
break;
}
else phi[i * pri[j]] = phi[i] * (pri[j] - 1), mu[i * pri[j]] = -mu[i];
}
}
sum[0] = 0;
for(int i = 1; i < N; i++)
sum[i] = sum[i - 1] + mu[i];
}
int main()
{
prime();
int T;
cin >> T;
while(T--)
{
LL n, m;
cin >> n >> m;
int mi = min(n, m);
LL ans = 0;
for(int i = 1, last; i <= mi; i = last + 1)
{
last = min((n/(n/i)) ,(m/(m/i)));
ans += (n / i) * (m / i) * (sum[last] - sum[i - 1]);
}
cout << ans << endl;
}
return 0;
}
HDU 2841 容斥 或 反演的更多相关文章
- HDU 1695 容斥
又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...
- HDU 4135 容斥
问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- HDU 4059 容斥初步练习
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
- cf900D. Unusual Sequences(容斥 莫比乌斯反演)
题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...
- bzoj 4671 异或图——容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
- 【bzoj4671】异或图(容斥+斯特林反演+线性基)
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...
随机推荐
- 【贪心算法】POJ-3040 局部最优到全局最优
一.题目 Description As a reward for record milk production, Farmer John has decided to start paying Bes ...
- JavaBean 与 EJB 的区别
JavaBean在一般情况下指的是实体类,在大部分情况下和POJO是同义词,基本构成就是一些字段和与之对应的 setter.getter方法,如果一个JavaBean需要在不同的JVM的进程中进行传递 ...
- 关于Keil C关键字xdata和data的问题
1.xdata表示这是一个外部RAM地址内的数据,数据最终将被保存至外部RAM的某个地址单元中:但是,外部RAM只能通过寄存器间接寻址来访问,也就是说,其地址需要保存在内部RAM中(其实或许是SFR中 ...
- ASP.NET MVC 2.0 参考源码索引
http://www.projky.com/asp.netmvc/2.0/System/Web/Mvc/AcceptVerbsAttribute.cs.htmlhttp://www.projky.co ...
- 安恒杯2月月赛-应该不是xss
1. 打开题目一看,是个留言板 2. 查看源码发现有几个js文件 依次打开发现在main.js里存在这样一段代码 3. 访问 /#login是登录的界面,/#chgpass是修改密码的界面,其中修改密 ...
- 红帽旗下Linux的版本说明RedHat、CentOS、Fedora、OEL等
简单总结一下RedHat.CentOS.Fedora Core区别关系: RedHat: 红帽已经被IBM 340亿刀收购了,但是红帽依旧发型自己的RedHat enterprise linux 版本 ...
- 014 Java的反射机制
作者:nnngu GitHub:https://github.com/nnngu 博客园:http://www.cnblogs.com/nnngu 简书:https://www.jianshu.com ...
- c++11 继承控制:final和override
c++11 继承控制:final和override #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <str ...
- hbase 原子操作cas
在高并发的情况下,对数据row1 column=cf1:qual1, timestamp=1, value=val1的插入或者更新可能会导致非预期的情况, 例如:原本客户端A需要在value=val ...
- BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】
题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...