典型的数列反演题。

运用莫比乌斯反演的一个结论 $[n = 1] = \sum_{d | n} \mu(d)$,将表达式做如下转化:

$$ ans = \sum_{i=1}^n \sum_{j=1}^i (\lfloor \frac{i-1}{j} \rfloor + 1) \sum_{d | i \land d | j} \mu(d) \\ = \sum_{d=1}^n \mu(d) \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^i (\lfloor \frac{i-1}{j} \rfloor + 1) $$

令$$F_n = \sum_{i=1}^n \sum_{j=1}^i (\lfloor \frac{i-1}{j} \rfloor + 1)$$

则有$$ans = \sum_{d=1}^n \mu(d) F(\lfloor \frac{n}{d} \rfloor)$$

先考虑如何计算Fn.

观察得知,内层求和与n无直接关联,不妨直接对F相邻两项做差:

$$dF_n = F_n - F_{n-1} \\= \sum_{j=1}^n (\lfloor \frac{n-1}{j} \rfloor + 1) $$

考虑每个j对每个n的贡献。

对于一个给定的j,我们可以枚举$\lfloor \frac{n-1}{j} \rfloor$的取值t,此时j和t将对$[j*t+1, j*(t+1)+1)$这一范围内所有的n对应的$F_n$产生t+1的贡献。

由调和级数可知,对所有j枚举它们在N以内的倍数只需要O(Nlog(N))级别的时间复杂度。我们只要在枚举j和t的同时维护一下$dF_n$的相邻两项差,最后做两次前缀和就可以得到$F_n$数列了。

再来考虑如何由$F_n$计算$ans_n$。

由$ans_n = \sum_{d=1}^n \mu(d) F(\lfloor \frac{n}{d} \rfloor)$,与上一步类似,同样可以考虑每个d对每个n的答案的贡献。对于每个d,枚举$\lfloor \frac{n}{d} \rfloor$的取值t,此时d和t对$[t*d, (t+1)*d)$范围内所有的n对应的$ans_n$产生$\mu(d) * F_t$ 的贡献。枚举结束后再做一遍前缀和即可。

 #include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = , mod = ;
typedef long long LL;
int mu[maxn], muS[maxn], F[maxn], ans[maxn], P[maxn], pcnt, N;
bool not_p[maxn]; void sieve()
{
mu[] = ;
for(int i = ;i < maxn;++i)
{
if(!not_p[i]) P[pcnt++] = i, mu[i] = -;
for(int j = ;j < pcnt;++j)
{
if(i * P[j] >= maxn) break;
not_p[i * P[j]] = true;
if(i % P[j] == )
{
mu[i * P[j]] = ;
break;
}
else mu[i * P[j]] = -mu[i];
}
}
} void init()
{
sieve();
for(int i = ;i <= N;++i) muS[i] = muS[i-] + mu[i];
N = ;
int L, R;
for(int k = ;k < N;++k)
{
L = k, R = k+k;
for(int t = ;L < N;++t, L += k, R += k)
{
F[L+] = (F[L+] + t) % mod;
if(R < N) F[R+] = (F[R+] - t) % mod;
//if(L < 3) printf("k = %d, (%d, %d] = %d\n", k, L, N, t);
}
}
for(int i = ;i <= N;++i) F[i] = (F[i] + F[i-]) % mod;
for(int i = ;i <= N;++i) F[i] = (F[i] + F[i-]) % mod;
for(int i = ;i <= N;++i)
F[i] = (F[i] + (LL) i * (i+) / ) % mod;
for(int i = ;i <= N;++i) //F[d]
{
for(int j = , k = i;k <= N;++j, k += i)
{
int tmp = (mod + F[j] * mu[i]) % mod;
ans[k] = (ans[k] + tmp) % mod;
if(k+i <= N) ans[k+i] = (ans[k+i] + mod - tmp) % mod;
}
}
for(int i = ;i <= N;++i) ans[i] = (ans[i] + ans[i-]) % mod;
} void work()
{
while(~scanf("%d", &N))
{
printf("%d\n", ans[N]);
}
}
int main() {
// your code goes here
int T;
init();
work();
return ;
}

莫比乌斯函数,差分数列

【2017多校训练08 1002】【HDOJ 6134】Battlestation Operational的更多相关文章

  1. 2017多校第8场 HDU 6134 Battlestation Operational 莫比乌斯反演

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134 题意: 解法: 那么g(n)怎么求,我们尝试打表发现g(n)是有规律的,g(n)=g(n-1)+ ...

  2. 2017ACM暑期多校联合训练 - Team 8 1002 HDU 6134 Battlestation Operational (数论 莫比乌斯反演)

    题目链接 Problem Description The Death Star, known officially as the DS-1 Orbital Battle Station, also k ...

  3. hdu 6134 Battlestation Operational 莫比乌斯反演

    Battlestation Operational Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  4. 2017 多校训练 1002 Balala Power!

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  5. hdu 6134: Battlestation Operational (2017 多校第八场 1002)【莫比乌斯】

    题目链接 比赛时没抓住重点,对那个受限制的“分数求和”太过关心了..其实如果先利用莫比乌斯函数的一个性质把后面那个[gcd(i,j)=1]去掉,那么问题就可以简化很多.公式如下 这和之前做过的一道题很 ...

  6. 2017 多校训练 1006 Function

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  7. 「2017 Multi-University Training Contest 7」2017多校训练7

    1002 Build a tree(递归) 题目链接 HDU6121 Build a tree 有一棵n个点的有根树,标号为0到n-1,i号点的父亲是\(\lfloor\frac{i-1}{k}\rf ...

  8. 「2017 Multi-University Training Contest 2」2017多校训练2

    1001 Is Derek lying 题目链接 HDU6045 Is Derek lying? 给出两个人选择题的回答,问得分分别为x和y是否可能.(\(1\le N \le 80000,0\le ...

  9. 「2017 Multi-University Training Contest 1」2017多校训练1

    1001 Add More Zero(签到题) 题目链接 HDU6033 Add More Zero 找出最大的k,使得\(2^m-1\ge 10^k\). 直接取log,-1可以忽略不计. #inc ...

随机推荐

  1. plsql链接数据库配置

    一. 目录结构 D:\install\PLSQL        |-- instantclient_11_2            |-- tnsnames.ora        |-- PLSQL ...

  2. Python Challenge 第 4 关攻略:linkedlist

    代码 import requests url = "http://www.pythonchallenge.com/pc/def/linkedlist.php?nothing={}" ...

  3. nodejs 接收上传的图片

    1.nodejs接收上传的图片主要是使用formidable模块,服务器是使用的express搭建. 引入formidable var formidable = require('./node_mod ...

  4. 洛谷P2261余数求和

    传送门啦 再一次见证了分块的神奇用法,在数论里用分块思想. 我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ ...

  5. 前端程序员必知的30个Chrome扩展-[转载]

    谷歌Chrome浏览器是网络上可用的最好浏览器之一,并且自2011年11月超越了Firefox浏览器之后,已经成为了互联网上占主导地位的浏览器.今天,HTML5中国与大家分享一些实用的谷歌Chrome ...

  6. nginx防止DDOS攻击

    防御DDOS是一个系统工程,攻击花样多,防御的成本高瓶颈多,防御起来即被动又无奈.DDOS的特点是分布式,针对带宽和服务攻击,也就是四层流量攻击和七层应用攻击,相应的防御瓶颈四层在带宽,七层的多在架构 ...

  7. html meta标签使用总结(转)

    之前学习前端中,对meta标签的了解仅仅只是这一句. <meta charset="UTF-8"> 但是打开任意的网站,其head标签内都有一列的meta标签.比如我博 ...

  8. Ansible的基础元素和YAML介绍

    本节内容: YAML Ansible常用的数据类型 Ansible基础元素 一.YAML 1. YAML介绍 YAML是一个可读性高的用来表达资料序列的格式.YAML参考了其他多种语言,包括:XML. ...

  9. for循环练习--杨辉三角

    package org.hanqi.zwxx; public class Yonghuisanjiao{ public static void main(String[] args) { // TOD ...

  10. JavaScript中的数据结构及实战系列

    本系列主要是讲解JavaScript中的数据结构及在实际项目中遇到的地方 JavaScript中的数据结构及实战系列(1):队列 JavaScript中的数据结构及实战系列(2):栈