Prince and Princess

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=4685

Description

There are n princes and m princesses. Princess can marry any prince. But prince can only marry the princess they DO love.

For all princes,give all the princesses that they love. So, there is a maximum number of pairs of prince and princess that can marry.

Now for each prince, your task is to output all the princesses he can marry. Of course if a prince wants to marry one of those princesses,the maximum number of marriage pairs of the rest princes and princesses cannot change.

Input

The first line of the input contains an integer T(T<=25) which means the number of test cases.

For each test case, the first line contains two integers n and m (1<=n,m<=500), means the number of prince and princess.

Then n lines for each prince contain the list of the princess he loves. Each line starts with a integer ki(0<=ki<=m), and then ki different integers, ranging from 1 to m denoting the princesses.

Output

For each test case, first output "Case #x:" in a line, where x indicates the case number between 1 and T.

Then output n lines. For each prince, first print li, the number of different princess he can marry so that the rest princes and princesses can still get the maximum marriage number.

After that print li different integers denoting those princesses,in ascending order.

Sample Input

2

4 4

2 1 2

2 1 2

2 2 3

2 3 4

1 2

2 1 2

Sample Output

Case #1:

2 1 2

2 1 2

1 3

1 4

Case #2:

2 1 2

Hint

题意

有n个王子,m个公主

每个王子喜欢ki个公主,现在把每个王子喜欢的公主都给了出来

国王叫大臣制作一张表,输出每个王子和这个公主结婚之后,满足不会影响别人结婚的条件

如果这个王子和这个公主结婚之后,依旧是一个完备匹配的话,就输出

题解:

和poj 1904不一样的是,这道题并没有给出完备匹配,而且男女人数不相等

这一点的话,我们可以先求一个二分图的最大匹配之后,假设匹配数是cnt

那么把左右两边的点都补充为n+m-cnt个点,然后再跑二分图

跑完之后就可以得到完备匹配了,然后就和1904做法一样了。

空间注意开大一点,不然会迷之wa……

不过我的做法不一样,我后面跑tarjan的时候,是让公主之间连边,让这个王子匹配的公主,和他喜欢的公主连边

然后跑的tarjan

代码

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 3e3+6;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,k,dfn[maxn],low[maxn],_clock=0,sta[maxn],top;
bool in_sta[maxn];
int changed[maxn],scc,num[maxn],vis[maxn],Left[maxn],Rht[maxn],mp[1005][1005];
vector<int> E[maxn],G[maxn];
vector<int>lft[maxn];
vector<int> ans;
void init()
{
memset(Rht,0,sizeof(Rht));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(sta,0,sizeof(sta));
memset(in_sta,0,sizeof(in_sta));
memset(changed,0,sizeof(changed));
memset(num,0,sizeof(num));
memset(vis,0,sizeof(vis));
memset(mp,0,sizeof(mp));
memset(Left,-1,sizeof(Left));
for(int i=0;i<maxn;i++)E[i].clear(),G[i].clear();
for(int i=0;i<maxn;i++)lft[i].clear();
scc=0;top=0;_clock=0;
}
void tarjan(int x)
{
dfn[x]=low[x]=++_clock;
sta[++top]=x;
in_sta[x]=1;
for(int i=0;i<E[x].size();i++)
{
int v = E[x][i];
if(!dfn[v])
tarjan(v),low[x]=min(low[x],low[v]);
else if(in_sta[v])
low[x]=min(low[x],dfn[v]);
}
if(dfn[x]==low[x])
{
int temp;
++scc;
do{
temp = sta[top--];
in_sta[temp]=0;
changed[temp]=scc;
++num[scc];
}while(temp!=x);
}
}
void add(int x,int y)
{
lft[x].push_back(y);
}
int dfs2(int x){
for(int i=0;i<lft[x].size();i++){
int it=lft[x][i];
if(Left[it] == -1){
Left[it] = x;
Rht[x]=it;
return 1;
}
if(vis[it]) continue;
vis[it] = 1;
if(dfs2(Left[it])){
Left[it] = x;
Rht[x]=it;
return 1;
}
}
return 0;
}
void solve(int cas)
{
init();
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
int x=read();
for(int j=0;j<x;j++)
{
int y=read();
add(i,n+y);
G[i].push_back(y);
}
}
int cnt=0;
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
cnt+=dfs2(i);
}
for(int i=0;i<maxn;i++)lft[i].clear();
memset(Left,-1,sizeof(Left));
for(int i=1;i<=n;i++)
{
for(int j=0;j<G[i].size();j++)
{
mp[i][G[i][j]]=1;
add(i,n+m-cnt+G[i][j]);
}
}
for(int i=n+1;i<=n+m-cnt;i++)
{
for(int j=1;j<=n+m-cnt;j++)
{
mp[i][j]=1;
add(i,n+m-cnt+j);
}
}
for(int i=1;i<=n;i++)
{
for(int j=m+1;j<=n+m-cnt;j++)
{
mp[i][j]=1;
add(i,n+m-cnt+j);
}
}
for(int i=1;i<=n+m-cnt;i++)
{
memset(vis,0,sizeof(vis));
dfs2(i);
}
for(int i=1;i<=n+m-cnt;i++)
{
for(int j=1;j<=n+m-cnt;j++)
{
if(Rht[i]-n-m+cnt!=j&&mp[i][j])
E[Rht[i]-n-m+cnt].push_back(j);
}
}
for(int i=1;i<=(n+m-cnt);i++)
if(!dfn[i])tarjan(i);
printf("Case #%d:\n",cas);
for(int i=1;i<=n;i++)
{
ans.clear();
for(int j=1;j<=m;j++)
{
if(mp[i][j]&&changed[Rht[i]-n-m+cnt]==changed[j])
ans.push_back(j);
}
printf("%d",ans.size());
for(int j=0;j<ans.size();j++)
printf(" %d",ans[j]);
printf("\n");
}
}
int main()
{
int t;
scanf("%d",&t);
for(int i=1;i<=t;i++)
solve(i);
return 0;
}

HDU 4685 Prince and Princess 二分图匹配+tarjan的更多相关文章

  1. HDU 4685 Prince and Princess (2013多校8 1010题 二分匹配+强连通)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  2. HDU 4685 Prince and Princess(二分图+强连通分量)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4685 题意:给出n个王子和m个公主.每个王子有一些自己喜欢的公主可以匹配.设最大匹配为M.那么对于每个 ...

  3. HDU 4685 Prince and Princess(二分匹配+强联通分量)

    题意:婚配问题,但是题目并不要求输出最大匹配值,而是让我们输出,一个王子可以与哪些王妃婚配而不影响最大匹配值. 解决办法:先求一次最大匹配,如果有两个已经匹配的王妃,喜欢她们两个的有两个或者以上相同的 ...

  4. hdu 4685 Prince and Princess(匈牙利算法 连通分量)

    看了别人的题解.须要用到匈牙利算法的强连通算法 #include<cstdio> #include<algorithm> #include<vector> #pra ...

  5. HDU 4685 Prince and Princess

    强连通分量,看大神的题解才会写的.... http://www.cnblogs.com/kuangbin/p/3261157.html 数据量有点大,第一次Submit 2995ms过的,时限3000 ...

  6. HDU4685:Prince and Princess(二分图匹配+tarjan)

    Prince and Princess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Othe ...

  7. hdu 3829 Cat VS Dog 二分图匹配 最大点独立集

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Prob ...

  8. HDU 2236 无题II(二分图匹配+二分)

    HDU 2236 无题II 题目链接 思路:行列仅仅能一个,想到二分图,然后二分区间长度,枚举下限.就能求出哪些边是能用的,然后建图跑二分图,假设最大匹配等于n就是符合的 代码: #include & ...

  9. TTTTTTTTTTTTTTTT hdu 5727 Necklace 阴阳珠 二分图匹配+暴力全排列

    Necklace Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Su ...

随机推荐

  1. Python开发环境(3):使用Eclipse+PyDev插件创建Django项目

    OS:Windows 10家庭中文版,Python:3.6,Eclipse:Oxygen.1a Release (4.7.1a), PyDev:6.3.2,Django:2.0.3 本文展示了怎么使用 ...

  2. python基础--re模块

    常用正则表达式符号 '.' 默认匹配除\n之外的任意一个字符,若指定flag DOTALL,则匹配任意字符,包括换行 '^' 匹配字符开头,若指定flags MULTILINE,这种也可以匹配上(r& ...

  3. 配置vuejs加载模拟数据

    [个人笔记,非技术博客] 1.使用前确保安装axios插件,vuejs官方推荐,当然使用其他插件也可以 2.配置dev-server.js var router = express.Router(); ...

  4. 多线程 or I/O复用select/epoll

    1:多线程模型适用于处理短连接,且连接的打开关闭非常频繁的情形,但不适合处理长连接.线程模型默认情况下,在Linux下每个线程会开8M的栈空间,在TCP长连接的情况下,以2000/分钟的请求为例,几乎 ...

  5. (三)HttpClient 抓取图片

    第一节: HttpClient 抓取图片 这里pom.xml需要用到io输入输出: <dependency> <groupId>commons-io</groupId&g ...

  6. Merkle Tree(默克尔树)算法解析

    Merkle Tree概念 Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树.Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值.非叶节点 ...

  7. 浏览器被hao123,hao524劫持的解决办法

    今天研究(翻,墙),装了几个插件,什么云帆.外遇.蓝灯 后来我的google浏览器被hao123劫持,百度浏览器被hao524劫持 删除浏览器快捷方式.属性目标里的后缀,过不多久又被劫持,把我搞毛了 ...

  8. 安装部署Apache Hadoop (完全分布式模式并且实现NameNode HA和ResourceManager HA)

    本节内容: 环境规划 配置集群各节点hosts文件 安装JDK1.7 安装依赖包ssh和rsync 各节点时间同步 安装Zookeeper集群 添加Hadoop运行用户 配置主节点登录自己和其他节点不 ...

  9. Maven使用—拷贝Maven依赖jar包到指定目录

    https://blog.csdn.net/u013514928/article/details/77930183

  10. 关键字final和override

    final关键字 限制某个类或结构体不能被继承 直接对类声明: class A final{}; class B : public A {}; 或这类内有final函数,类可以被继承,但是final函 ...