【BZOJ-3527】力 FFT
3527: [Zjoi2014]力
Time Limit: 30 Sec Memory Limit: 256 MBSec Special Judge
Submit: 1544 Solved: 899
[Submit][Status][Discuss]
Description

Input
Output
n行,第i行输出Ei。与标准答案误差不超过1e-2即可。
Sample Input
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880
Sample Output
3439.793
7509018.566
4595686.886
10903040.872
HINT
Source
Solution
一道裸的FFT,我瞪了快一节课...
先两边同除$p_{j}$就可以直接得到$E_{j}$的关于$q$的关系..然后就可以看出是一个卷积的形式了..
主要是光想直接$A\bigotimes B=E$,实际上正反求一下相减就好..
然后这里discuss里提醒了我一件事..爆int
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
struct Complex{
double r,i;
Complex(double R=0.0,double I=0.0) {r=R; i=I;}
Complex operator + (const Complex & A) const {return Complex(r+A.r,i+A.i);}
Complex operator - (const Complex & A) const {return Complex(r-A.r,i-A.i);}
Complex operator * (const Complex & A) const {return Complex(r*A.r-i*A.i,r*A.i+i*A.r);}
};
#define MAXN 600010
#define Pai acos(-1.0)
Complex A[MAXN],B[MAXN],C[MAXN],D[MAXN];
int N,len;
double a[MAXN];
inline void Prework()
{
len=1;
while (len<((N-1)<<1)) len<<=1;
for (int i=0; i<=N-1; i++) A[i]=Complex(a[i],0);
for (int i=N; i<len; i++) A[i]=Complex(0,0);
for (int i=0; i<=N-1; i++) B[i]=Complex(a[N-1-i],0);
for (int i=N; i<len; i++) B[i]=Complex(0,0);
for (int i=0; i<=N-1; i++) if (i) D[i]=C[i]=Complex(1.0/i/i,0);
for (int i=N; i<len; i++) D[i]=C[i]=Complex(0,0);
}
inline void Rader(Complex *x)
{
for (int i=1,j=len>>1,k; i<len-1; i++)
{
if (i<j) swap(x[i],x[j]);
k=len>>1;
while (j>=k) j-=k,k>>=1;
if (j<k) j+=k;
}
}
inline void DFT(Complex *x,int opt)
{
Rader(x);
for (int h=2; h<=len; h<<=1)
{
Complex Wn( cos(opt*2*Pai/h),sin(opt*2*Pai/h) );
for (int i=0; i<len; i+=h)
{
Complex W(1,0);
for (int j=i; j<i+h/2; j++)
{
Complex u=x[j],t=W*x[j+h/2];
x[j]=u+t; x[j+h/2]=u-t;
W=W*Wn;
}
}
}
if (opt==-1)
for (int i=0; i<len; i++) x[i].r/=len;
}
inline void FFT(Complex *x,Complex *y)
{
DFT(x,1); DFT(y,1);
for (int i=0; i<len; i++) x[i]=x[i]*y[i];
DFT(x,-1);
}
int main()
{
scanf("%d",&N);
for (int i=0; i<N; i++) scanf("%lf",&a[i]);
Prework();
// for (int i=0; i<len; i++) printf("%.6lf\n",A[i].r); puts("=================");
// for (int i=0; i<len; i++) printf("%.6lf\n",B[i].r); puts("=================");
// for (int i=0; i<len; i++) printf("%.6lf\n",C[i].r); puts("=================");
FFT(A,C); FFT(B,D);
for (int i=0; i<N; i++) printf("%.3lf\n",A[i].r-B[N-1-i].r);
return 0;
}
【BZOJ-3527】力 FFT的更多相关文章
- BZOJ 3527 力 | FFT
BZOJ 3527 力 | 分治 题意 给出数组q,$E_i = \sum_{i < j} \frac{q_i}{(i - j) ^ 2} - \sum_{i > j} \frac{q_i ...
- BZOJ 3527 力
fft推下公式.注意两点: (1)数组从0开始以避免出错. (2)i*i爆long long #include<iostream> #include<cstdio> #incl ...
- [BZOJ]3527 力(ZJOI2014)
第一次背出FFT模板,在此mark一道裸题. Description 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. Input 第一行一个整数n. 接下来n行每行输入一个数,第i ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)
3527: [Zjoi2014]力 Time Limit: 30 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2003 Solved: 11 ...
- BZOJ 3527: [ZJOI2014]力(FFT)
BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...
- bzoj 3527 [Zjoi2014]力——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...
- bzoj 3527 [Zjoi2014] 力 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...
随机推荐
- CodeForces 724G: Xor-matic Number of the Graph
题目传送门:CF724G. 题意简述: 一张 \(n\) 个点的无向图,边有边权. 定义三元组 \((u,v,w)(1\le u < v\le n)\) 合法当且仅当存在从点 \(u\) 到点 ...
- python几种装饰器的用法
用函数装饰函数 这种比较常见首先定义装饰器函数 def cache(func): data = {} @wraps(func) def wrapper(*args, **kwargs): key = ...
- C#抓取网络图片保存到本地
C#抓取网络图片保存到本地 System.Net.WebClient myWebClient = new System.Net.WebClient(); //将头像保存到服务器 string virP ...
- c++语言知识点汇总
c++ primer version-5 的整理 section 1: 内置类型和自定义类型: main函数的返回值:指示状态.0:成功:1:系统定义. unix和win系统中,执行完程序可以使用ec ...
- STL容器 vector,list,deque 性能比较
C++的STL模板库中提供了3种容器类:vector,list,deque对于这三种容器,在觉得好用的同时,经常会让我们困惑应该选择哪一种来实现我们的逻辑.在少量数据操作的程序中随便哪一种用起来感觉差 ...
- gc overhead limit exceeded内存问题
gc overhead limit exceeded 当出现这种问题的时候一般有两种思路 一.修改idea或者eclipse中的配置文件,将内存调到1024即可 二.在代码中通过system.gc 手 ...
- python网络编程--线程使用threading
一:线程使用 线程使用有两种方法,一种是直接使用,二是通过继承threading.Thread类使用 二:函数式使用 函数式:调用thread模块中的start_new_thread()函数来产生新线 ...
- day08作业
1.A.在类中的位置不同 成员变量:在类中方法外 局部变量:在方法定义中或者方法声明上 B.在内存中的位置不同 成员变量:在堆内存(成员变量属于对象,对象进堆内存) 局部变量:在栈内存(局部变量属于方 ...
- Centos之字符串搜索命令grep
grep [选项] 字符串 文件名 在文件当中匹配符合条件的字符串 选项: -i 忽略大小写 -v 排除指定字符串 [root@localhost ~]# grep "work" ...
- SonarQube的安装、配置与使用(windows)
onarQube是管理代码质量一个开放平台,可以快速的定位代码中潜在的或者明显的错误,下面将会介绍一下这个工具的安装.配置以及使用. 准备工作: 1.jdk(不再介绍) 2.sonarqube:htt ...