Black And White

Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others)

Total Submission(s): 929 Accepted Submission(s): 238

Special Judge

Problem Description

In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.

— Wikipedia, the free encyclopedia

In this problem, you have to solve the 4-color problem. Hey, I’m just joking.

You are asked to solve a similar problem:

Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly ci cells.

Matt hopes you can tell him a possible coloring.

Input

The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.

For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).

The second line contains K integers ci (ci > 0), denoting the number of cells where the i-th color should be used.

It’s guaranteed that c1 + c2 + · · · + cK = N × M .

Output

For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1).

In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.

If there are multiple solutions, output any of them.

Sample Input

4 1 5 2 4 1 3 3 4 1 2 2 4 2 3 3 2 2 2 3 2 3 2 2 2

Sample Output

Case #1: NO Case #2: YES 4 3 4 2 1 2 4 3 4 Case #3: YES 1 2 3 2 3 1 Case #4: YES 1 2 2 3 3 1

题意

给你n*m的格子和K个颜色,然后问你能不能涂出每个格子相邻的颜色都不一样的图案,任意输出一种就好

题解

DFS,但是会T,所以需要神剪枝

如果当前的颜色数量,大于剩下格子的一半的话,那么肯定是可以直接return的,因为必然会有两个相同颜色的格子挨在一起

所以,我们可以就这样剪枝

代码

int c[maxn];
int flag=0;
int kiss[maxn][maxn];
int n,m,k;
void dfs(int x,int y,int cur)
{ if(flag==1)
return;
if(cur==0)
{
flag=1;
printf("YES\n");
REP_1(i,n)
{
REP_1(j,m)
{
if(j==1)
printf("%d",kiss[i][j]);
else
printf(" %d",kiss[i][j]);
}
printf("\n");
}
return;
} REP_1(i,k)
{
if(c[i]>(cur+1)/2)
return;
} //cout<<x<<" "<<y<<" "<<cur<<endl;
REP_1(i,k)
{
if((kiss[x-1][y]!=i&&kiss[x][y-1]!=i)&&c[i]>0)
{
kiss[x][y]=i;
c[i]--;
if(y==m)
dfs(x+1,1,cur-1);
else
dfs(x,y+1,cur-1);
c[i]++;
kiss[x][y]=0;
}
}
}
int main()
{
int t;
RD(t);
REP_1(ti,t)
{
RD(n),RD(m),RD(k);
memset(c,0,sizeof(c));
memset(kiss,0,sizeof(kiss));
flag=0;
REP_1(i,k)
cin>>c[i];
printf("Case #%d:\n",ti);
dfs(1,1,n*m);
if(flag!=1)
printf("NO\n");
}
}

hdoj 5113 Black And White DFS+剪枝的更多相关文章

  1. [HDU 5113] Black And White (dfs+剪枝)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5113 题目大意:给你N*M的棋盘,K种颜色,每种颜色有c[i]个(sigma(c[i]) = N*M) ...

  2. HDU 5113 Black And White 回溯+剪枝

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5113 Black And White Time Limit: 2000/2000 MS (Java/ ...

  3. Black And White(DFS+剪枝)

    Black And White Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others ...

  4. DFS+剪枝 HDOJ 5323 Solve this interesting problem

    题目传送门 /* 题意:告诉一个区间[L,R],问根节点的n是多少 DFS+剪枝:父亲节点有四种情况:[l, r + len],[l, r + len - 1],[l - len, r],[l - l ...

  5. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  6. HDOJ(HDU).1045 Fire Net (DFS)

    HDOJ(HDU).1045 Fire Net [从零开始DFS(7)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HD ...

  7. HDOJ(HDU).1241 Oil Deposits(DFS)

    HDOJ(HDU).1241 Oil Deposits(DFS) [从零开始DFS(5)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...

  8. HDOJ(HDU).1035 Robot Motion (DFS)

    HDOJ(HDU).1035 Robot Motion [从零开始DFS(4)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DF ...

  9. *HDU1455 DFS剪枝

    Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

随机推荐

  1. C# 序列化高级用法

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...

  2. BigDecimal常用方法

    一.介绍 Java中提供了大数字(超过16位有效位)的操作类,即 java.math.BinInteger 类和 java.math.BigDecimal 类,用于高精度计算. 其中 BigInteg ...

  3. java 多线程总结篇3之——生命周期和线程同步

    一.生命周期 线程的生命周期全在一张图中,理解此图是基本: 线程状态图 一.新建和就绪状态 当程序使用new关键字创建了一个线程之后,该线程就处于新建状态,此时它和其他的Java对象一样,仅仅由Jav ...

  4. MySQL学习笔记:delete

    使用 SQL 的 DELETE FROM 命令来删除 MySQL 数据表中的记录. 语法: DELETE FROM table_name [WHERE Clause] 如果没有指定 WHERE 子句, ...

  5. MySQL学习笔记:while循环

    思考:while循环是否只能使用在存储过程或者存储函数之中,不能直接在查询语句中使用? ———— 循环一般在存储过程和存储函数中使用. 直接放几个例子: 例一: 1.创建存储过程 DELIMITER ...

  6. MySQL学习笔记:调用存储过程或函数报1418错误

    问题 MySQL开启bin-log后,调用存储过程或者函数以及触发器时,会出现错误号为1418的错误: ERROR 1418 (HY000): This function has none of DE ...

  7. vector 测试

    vector 测试 */--> div.org-src-container { font-size: 85%; font-family: monospace; } pre.src { backg ...

  8. Python3中的yield from语法

    Python3中的yield from语法 by Kay Zheng Tags: python, 协程, generator 30 March 2014 2016-2-23 更新 這篇文章是兩年前寫的 ...

  9. Owin 自定义中间件

    /// <summary> /// 自定义的中间件 /// </summary> public class CustomMiddleware : OwinMiddleware ...

  10. centos安装lspci工具

    https://blog.csdn.net/wudiyi815/article/details/38325199