优先队列的一种实现--堆ADT
二叉堆的两个重要性质:
1、结构性,为完全二叉树,可以用数组方便地表示。2、堆序性:树中每个节点的关键字值大于或等于其父节点的关键字值。
二叉堆的数据结构声明如下:
struct HeapStruct;
typedef struct HeapStruct *PriorityQueue; PriorityQueue Initialize(int MaxElements);
void Destroy(PriorityQueue H);
void MakeEmpty(PriorityQueue H);
void Insert(ElementType X, PriorityQueue H);
ElementType FindMin(PriorityQueue H);
ElementType DeleteMin(PriorityQueue H);
int isEmpty(PriorityQueue H);
int isFull(PriorityQueue H); struct HeapStruct{
int Capacity;
int size;
ElementType *Elements;
};
初始化函数代码如下:
PriorityQueue Initialize(int MaxElements){
PriorityQueue H; H = malloc(sizeof(HeapStruct));
H->Elements = malloc((MaxElements+)*sizeof(ElementType)); H->Capacity = MaxElements;
H->size = ;
return H;
}
Insert函数实现代码如下:
void Insert(ElementType X, PriorityQueue H){
int i; if(isFull(H)){
printf("Heap is full\n");
return;
}
for(i=++H->size; i> && H->Elements[i/] > X; i /=)
H->Elements[i] = H->Elements[i/]; H->Elements[i] = X;
}
DeleteMin函数实现代码如下:
ElementType DeleteMin(PriorityQueue H){
int i, Child;
ElementType MinElement, LastElement; if(isEmpty(H)){
printf("Priority queue is empty\n");
return MinData; //无意义的堆中比最小值还小的值
} MinElement = H->Elements[];
LastElement = H->Elements[H->size--]; for(i=; i*<=H->size; i=Child){
Child = i*;
if(Child != H->Size && H->Elements[Child + ] < H->Elements[Child])
Child++;
if(LastElement > H->Elements[Child])
H->Elements[i] = H->Elements[Child];
else
break;
}
H->Elements[i] = LastElement;
return MinElement;
}
优先队列的一种实现--堆ADT的更多相关文章
- 优先队列PriorityQueue实现 大小根堆 解决top k 问题
转载:https://www.cnblogs.com/lifegoesonitself/p/3391741.html PriorityQueue是从JDK1.5开始提供的新的数据结构接口,它是一种基于 ...
- Black Box--[优先队列 、最大堆最小堆的应用]
Description Our Black Box represents a primitive database. It can save an integer array and has a sp ...
- 两种建立堆的方法HeapInsert & Heapify
参考 堆排序中两种建堆方法的比较 第一种方法HeapInsert 它可以假定我们事先不知道有多少个元素,通过不断往堆里面插入元素进行调整来构建堆. 它的大致步骤如下: 首先增加堆的长度,在最末尾的地方 ...
- 优先队列Priority Queue和堆Heap
对COMP20003中的Priority queue部分进行总结.图片来自于COMP20003 queue队列,顾名思义特点先进先出 priority queue优先队列,出来的顺序按照优先级prio ...
- 堆,set,优先队列
当我们需要高效的完成以下操作时: 1.插入一个元素 2.取得最小(最大)的数值,并且删除 能够完成这种操作的数据结构叫做优先队列 而能够使用二叉树,完成这种操作的数据结构叫做堆(二叉堆) 堆与优先队列 ...
- 【ZZ】堆和堆的应用:堆排序和优先队列
堆和堆的应用:堆排序和优先队列 https://mp.weixin.qq.com/s/dM8IHEN95IvzQaUKH5zVXw 堆和堆的应用:堆排序和优先队列 2018-02-27 算法与数据结构 ...
- 结构之美——优先队列基本结构(四)——二叉堆、d堆、左式堆、斜堆
实现优先队列结构主要是通过堆完成,主要有:二叉堆.d堆.左式堆.斜堆.二项堆.斐波那契堆.pairing 堆等. 1. 二叉堆 1.1. 定义 完全二叉树,根最小. 存储时使用层序. 1.2. 操作 ...
- 优先队列(堆) -数据结构(C语言实现)
数据结构与算法分析 优先队列 模型 Insert(插入) == Enqueue(入队) DeleteMin(删除最小者) == Dequeue(出队) 基本实现 简单链表:在表头插入,并遍历该链表以删 ...
- 优先队列实现 大小根堆 解决top k 问题
摘于:http://my.oschina.net/leejun2005/blog/135085 目录:[ - ] 1.认识 PriorityQueue 2.应用:求 Top K 大/小 的元素 3 ...
随机推荐
- 4821: [Sdoi2017]相关分析
4821: [Sdoi2017]相关分析 链接 分析: 大力拆式子,化简,然后线段树.注意精度问题与爆longlong问题. 代码: #include<cstdio> #include&l ...
- element-ui 点击行如何获取table的行索引
文档中有一个tableRowClassName方法,可以获取到当前行的index, tableRowClassName ({row, rowIndex}) { //把每一行的索引放进row row.i ...
- Oracle中Date和Timestamp的区别
Date和Timestamp精度不一样: 01)Timestamp精确到了秒的小数点(如:2018-11-13 16:40:03.698): 02)Date只精确到整数的秒(如:2018-11-13 ...
- 大数据中HBase的Java接口封装
该文前提为已经搭建好的HBase集群环境,参见 HBase集群搭建与配置 ,本文主要是用Java编写一个Servlet接口,部署在Tomcat服务器上,用于提供http的接口供其他地方调用,接口中集成 ...
- mysql面试常见题目2
Sutdent表的定义 字段名 字段描述 数据类型 主键 外键 非空 唯一 自增 Id 学号 INT(10) 是 否 是 是 是 sName 姓名 VARCHAR(20) 否 否 是 否 否 Sex ...
- users命令详解
基础命令学习目录 原文链接:https://blog.csdn.net/m0_38132420/article/details/78861464 users命令用于显示当前登录系统所有的用户的用户列表 ...
- Python3中的函数 大全
Python 函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print().但也可以自己创建 ...
- Hadoop错误码速查
经常遇到的exception是:PipeMapRed.waitOutputThreads(): subprocess failed with code N "OS error code 1: ...
- 配置Tomcat使用HTTP/2
转自: https://zhuanlan.zhihu.com/p/21349186 前情提要: Tomcat高效响应的秘密(一) Sendfile与Gzip Tomcat高效响应的秘密(二) keep ...
- iOS 静态库 与 demo 联合调试
在修复bug或者开发静态库需要调试,这个时候需要把工程中的.framework和资源bundle文件都替换为静态库原工程文件 首先需要确保静态库工程文件没有打开,Xcode不允许在两个地方同时打开同一 ...