1589 移数博弈

基准时间限制:1 秒 空间限制:262144 KB 分值: 80 难度:5级算法题
 

小A和小B在玩一个游戏。

他们拥有一个数列。

小A在该数列中选择出最大的那个数,然后移出该数列。

小B在剩下的数列中选择出最大的那个数,并乘上小A的那个值,作为他的答案。

那么现在问题来了。

他们现在想换一种玩法,把该数列长度大于等于2的区间(即n*(n-1)/2个区间)单独作为一个数列拿出来,然后做一次上述的游戏,然后计算出小B所有的答案,考虑到输出那么多数比较困难,因此他们想知道所有答案和对 1e9+7取模后的值。

样例解释:

该数列为2,0,1,2

对于1-2的区间答案为0

对于1-3的区间答案为2

对于1-4的区间答案为4

对于2-3的区间答案为0

对于2-4的区间答案为2

对于3-4的区间答案为2

Input
第一行五个数n,a0,a,b,p(1<=n,a0,a,b,p<=10000000)。
该数列的构造方法为,a[i]=(a[i-1]*a+b)%p。该数列的下标为1~n。
Output
1行,表示答案。
Input示例
4 1 1 1 3
Output示例
10

题解:

  设当前为now

  设now之前第一个比他大的数的位置为L1,L1之前第一个比他大的数的位置为L2

  设now之后第一个比他大的数的位置为R1,R1之后第一个比他大的数的位置为R2

  那么对于now,其作为次大值存在的区间有:

    1、左端点在[L2+1,L1]之间,右端点在[now,R1-1]之间

    2、左端点在[L1+1,now]之间,右端点在[R1,R2-1]之间。

  因为此题数据范围n在1~1e7,最大值p范围在1~1e7,所以考虑用桶排序优化合适。

  然后维护一个链表,从小到大枚举数,枚举完就删除,保证每次枚举的数是链表中最小的。这样就可以控制复杂度在O(N)啦。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e7+;
const int MOD = 1e9+;
int a[N], b[N];//b[i]=j 表示a[j]排序后在i位置
int vis[N];
int pre[N], nex[N];
void del(int now) {//删除now节点
nex[pre[now]] = nex[now];
pre[nex[now]] = pre[now];
}
int main() {
int n, aa, bb, p, i, j;
ll ans = ;
scanf("%d%d%d%d%d", &n, &a[], &aa, &bb, &p);
for(i = ; i <= n; ++i) a[i] = (1ll * a[i-] * aa + bb) % p;
//桶排序
for(i = ; i <= n; ++i) vis[a[i]]++;
for(i = ; i < p; ++i) vis[i] += vis[i-];
for(i = n; i >= ; --i) b[vis[a[i]]--] = i;
//链表
pre[] = ; nex[n+] = n+;
for(i = ; i <= n; ++i) {
pre[i] = i - ;
nex[i] = i + ;
}
for(i = ; i <= n; ++i) {
int now = b[i];
int l1 = pre[now];
int l2 = pre[l1];
int r1 = nex[now];
int r2 = nex[r1];
ans = (ans + (1ll*a[now]*a[l1]%MOD*(l1-l2)%MOD*(r1-now)%MOD)) % MOD;
ans = (ans + (1ll*a[now]*a[r1]%MOD*(now-l1)%MOD*(r2-r1)%MOD)) % MOD;
del(now);
}
printf("%lld\n", ans);
return ;
}

51nod 1589 移数博弈【桶排序+链表】的更多相关文章

  1. 51nod 1589 移数博弈 | 基数排序(ノಠ益ಠ)ノ彡┻━┻

    51nod 1589 移数博弈 题面 给出一个序列a,长度 n <= 10^7, a[i] <= 10^7 求每个长度 >= 2 的区间的最大值*次大值 之和. 题解 主要思路是求每 ...

  2. 51Nod 算法马拉松12 移数博弈

    点进去发现并不是博弈QAQ 一开始考虑单调队列什么乱七八糟的发现根本做不出来 (没错我一直在想枚举最大值求次大值QAQ 不妨换个思路: 我们考虑枚举次大值求最大值 设当前为now, 设now之前第一个 ...

  3. 桶排序(BucketSort)

    1 桶排序核心思想是 根据数据规模n划分 m个相同大小的区间 (每个区间为一个桶,桶可理解为容器) 2 每个桶存储区间内的元素(区间为半开区间 例如[0,10) 或者 [200,300) ) 3 将n ...

  4. 桶排序之python实现源码

    tmp = [] def bucket_sort(old): for i in range(len(old)): tmp.append([]) for i in old: tmp[int( i * l ...

  5. Java实现桶排序和基数排序

    桶排序代码: import java.util.Arrays; /** * 桶排序 * 工作的原理是将数组分到有限数量的桶里 * 每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序 ...

  6. 记数排序 & 桶排序 & 基数排序

    为什么要写这样滴一篇博客捏...因为一个新初一问了一道水题,结果就莫名其妙引起了战斗. 然后突然发现之前理解的桶排序并不是真正的桶排序,所以写一篇来区别下这三个十分相似的排序辣. 老年菜兔的觉醒!!! ...

  7. BucketSort(桶排序)原理及C++代码实现

    桶排序假设输入数据服从均匀分布,平均情况下它的时间复杂度为O(n). 桶排序将输入数据的区间均匀分成若干份,每一份称作“桶”.分别对每一个桶的内容进行排序,再按桶的顺序输出则完成排序. 通常使用链表来 ...

  8. 【Weiss】【第03章】练习3.13:桶排序

    [练习3.13] 利用社会安全号码对学生记录构成的数组排序.编写一个程序进行这件工作,使用具有1000个桶的基数排序并且分三趟进行. Answer: 首先,对社会安全号码不了解的就把它当成一个不超过9 ...

  9. 数据结构与算法-排序(十)桶排序(Bucket Sort)

    摘要 桶排序和基数排序类似,相当于基数排序的另外一种逻辑.它是将取值范围当做创建桶的数量,桶的长度就是序列的大小.通过处理比较元素的数值,把元素放在桶的特定位置,然后遍历桶,就可以得到有序的序列. 逻 ...

随机推荐

  1. Node.js Express 框架2

    文件上传 以下我们创建一个用于上传文件的表单,使用 POST 方法,表单 enctype 属性设置为 multipart/form-data. index.html <html> < ...

  2. iOS原生APP和H5交互-delegate和第三方

    一.原生代码中直接加载页面(拦截) 1.    具体案例 加载本地/网络HTML5作为功能介绍页 2.    代码示例 //本地 -(void)loadLocalPage:(UIWebView*)we ...

  3. 大话JVM(一):垃圾收集算法

     系列介绍|本系列主要是记录学习jvm过程中觉得重要的内容,方便以后复习 在说垃圾收集算法之前,先要说一下垃圾收集,从大的讲,垃圾收集需要考虑三件事情: 1.哪些内存需要回收 2.什么时候回收 3.如 ...

  4. Jetty源码解析(web.xml的处理机制)

    org.eclipse.jetty.webapp 包下的 StandardDescriptorProcessor类.该类对象会在WebAppContext的doStart方法启用 注册了遍历web.x ...

  5. mybatis之Sql语句构建器

    SQL类: 方法 描述 SELECT(String) SELECT(String...) 开始或插入到 SELECT子句. 可以被多次调用,参数也会添加到 SELECT子句. 参数通常使用逗号分隔的列 ...

  6. Golang 使用FreeType-go进行字体

         FreeType库(http://www.freetype.org/)是一个完全免费(开源)的.高质量的且可移植的字体引擎,它提供统一的接口来访问多种字体格式文件,包括TrueType, O ...

  7. Implementation:UnionFindSet 并查集

    class UnionFindSet { private: int *pref; int *rank; int capacity; public: UnionFindSet(int n) { ) { ...

  8. Effective C++ 避免数组多态

    #include <iostream> #include <cstdlib> using namespace std; class Base { public: int idx ...

  9. 使用JavaScript动态更改CSS样式

    在很多情况下,都需要对网页上元素的样式进行动态的修改.在JavaScript中提供几种方式动态的修改样式,下面将介绍方法的使用.效果.以及缺陷. 1.使用obj.className来修改样式表的类名. ...

  10. House of Roman 实战

    前言 这是前几天国外一个 老哥 提出的一种思路 ,学习了一下感觉其中的堆布局的手法还不错,做个分享与记录. 这种利用手法的主要特点是不需要 leak libc的地址,通过 堆内存的布局 和 堆相关的漏 ...