BZOJ2286:[SDOI2011]消耗战(树形DP,虚树)
Description
Input
第一行一个整数n,代表岛屿数量。
接下来n-1行,每行三个整数u,v,w,代表u号岛屿和v号岛屿由一条代价为c的桥梁直接相连,保证1<=u,v<=n且1<=c<=100000。
第n+1行,一个整数m,代表敌方机器能使用的次数。
接下来m行,每行一个整数ki,代表第i次后,有ki个岛屿资源丰富,接下来k个整数h1,h2,…hk,表示资源丰富岛屿的编号。
Output
输出有m行,分别代表每次任务的最小代价。
Sample Input
1 5 13
1 9 6
2 1 19
2 4 8
2 3 91
5 6 8
7 5 4
7 8 31
10 7 9
3
2 10 6
4 5 7 8 3
3 9 4 6
Sample Output
32
22
HINT
对于100%的数据,2<=n<=250000,m>=1,sigma(ki)<=500000,1<=ki<=n-1
Solution
虚树真是个好东西啊QAQ
建议对虚树的理解看第一个,构建看第二个QAQ
题解去看第二个吧我也懒得写了XD
顺带提一句因为本题特殊,所以建虚树的时候要写成57行那样,否则就把57行删掉改成58行就行了。
至于本题为什么要像57行那么写呢……
假设$x$点是$y$的祖先,如果$x$到根不连通,那么$y$到根一定不连通,所以$y$点也就没有加进去的必要了。而且加进去的话像我这样$DP$也就不对了啊啊QAQQQQ
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#define N (250009)
#define LL long long
using namespace std; struct Edge{int to,next,len;}edge[N<<];
int n,m,k,u,v,l,dfs_num;
int a[N],Depth[N],f[N][],DFN[N];
LL Min[N];
int head[N],num_edge; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
edge[num_edge].len=l;
head[u]=num_edge;
} void DFS(int x,int fa)
{
f[x][]=fa;
for (int i=; i<=; ++i) f[x][i]=f[f[x][i-]][i-];
DFN[x]=++dfs_num; Depth[x]=Depth[fa]+;
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].to!=fa)
{
Min[edge[i].to]=min(Min[x],(LL)edge[i].len);
DFS(edge[i].to,x);
}
} int LCA(int x,int y)
{
if (Depth[x]<Depth[y]) swap(x,y);
for (int i=; i>=; --i)
if (Depth[f[x][i]]>=Depth[y]) x=f[x][i];
if (x==y) return x;
for (int i=; i>=; --i)
if (f[x][i]!=f[y][i]) x=f[x][i], y=f[y][i];
return f[x][];
} vector<int>E[N];
void ADD(int x,int y) {E[x].push_back(y);}
int stack[N],top;
bool cmp(int x,int y) {return DFN[x]<DFN[y];} void Insert(int x)
{
if (top==) {stack[++top]=x; return;}
int lca=LCA(x,stack[top]);
if (lca==stack[top]) return;
// if (lca==stack[top]) {stack[++top]=x; return;}
while (top> && DFN[stack[top-]]>=DFN[lca])
ADD(stack[top-],stack[top]), top--;
if (lca!=stack[top]) ADD(lca,stack[top]), stack[top]=lca;
stack[++top]=x;
} void Build()
{
stack[top=]=;
for (int i=; i<=k; ++i) Insert(a[i]);
while (top>=) ADD(stack[top-],stack[top]), top--;
} LL DP(int x)
{
int sz=E[x].size();
if (!sz) return Min[x];
LL ans=;
for (int i=; i<sz; ++i)
ans+=DP(E[x][i]);
E[x].clear();
return min(ans,Min[x]);
} int main()
{
Min[]=1e18;
scanf("%d",&n);
for (int i=; i<=n-; ++i)
{
scanf("%d%d%d",&u,&v,&l);
add(u,v,l); add(v,u,l);
}
DFS(,);
scanf("%d",&m);
for (int i=; i<=m; ++i)
{
scanf("%d",&k);
for (int j=; j<=k; ++j) scanf("%d",&a[j]);
sort(a+,a+k+,cmp);
Build();
printf("%lld\n",DP());
}
}
BZOJ2286:[SDOI2011]消耗战(树形DP,虚树)的更多相关文章
- [luoguP2495] [SDOI2011]消耗战(DP + 虚树)
传送门 明显虚树. 别的题解里都是这样说的. 先不考虑虚树,假设只有一组询问,该如何dp? f[u]表示把子树u中所有的有资源的节点都切掉的最优解 如果节点u需要切掉了话,$f[u]=val[u]$ ...
- P2495 [SDOI2011]消耗战 lca倍增+虚树+树形dp
题目:给出n个点的树 q次询问 问切断 k个点(不和1号点联通)的最小代价是多少 思路:树形dp sum[i]表示切断i的子树中需要切断的点的最小代价是多少 mi[i]表示1--i中的最小边权 ...
- 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分
树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...
- 【CF809E】Surprise me! 树形DP 虚树 数学
题目大意 给你一棵\(n\)个点的树,每个点有权值\(a_i\),\(a\)为一个排列,求 \[ \frac{1}{n(n-1)}\sum_{i=1}^n\sum_{j=1}^n \varphi(a_ ...
- 3611: [Heoi2014]大project|树形DP|虚树
构建出虚树然后DP统计答案 自己写的DP太傻QAQ,各种WA 膜了一发PoPoQQQ大爷的DP方法 mxdis,mndis分别表示到当前点近期和最远的被选出来的点的距离 mx,mn分别表示在以当前点为 ...
- CF613D:Kingdom and its Cities(树形DP,虚树)
Description 一个王国有n座城市,城市之间由n-1条道路相连,形成一个树结构,国王决定将一些城市设为重要城市. 这个国家有的时候会遭受外敌入侵,重要城市由于加强了防护,一定不会被占领.而非重 ...
- BZOJ3611:[HEOI2014]大工程(树形DP,虚树)
Description 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 2 个国家 a,b 之间建一条新通 ...
- 【BZOJ-1040】骑士 树形DP + 环套树 + DFS
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3312 Solved: 1269[Submit][Status ...
- HDU 4514 - 湫湫系列故事——设计风景线 - [并查集判无向图环][树形DP求树的直径]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...
随机推荐
- 【读】为什么BIO效率低下
原因: 假如有10000个连接,4核CPU ,那么bio 就需要一万个线程,而nio大概就需要5个线程(一个接收请求,四个处理请求).如果这10000个连接同时请求,那么bio就有10000个线程抢四 ...
- HTTP协议之内容协商
一个URL常常需要代表若干不同的资源.例如那种需要以多种语言提供其内容的网站站点.如果某个站点有说法语的和说英语的两种用户,它可能想用这两种语言提供网站站点信息.理想情况下,服务器应当向英语用户发送英 ...
- Python Django ORM 字段类型、参数、外键操作
AutoField(Field) - int自增列,必须填入参数 primary_key=True BigAutoField(AutoField) - bigint自增列,必须填入参数 primary ...
- SQL Server 2017搭建主从备份
SQL Server 2017搭建主从¶ 关于日志传输¶ 和Oracle DG,Mysql主从一样,SQL Server也支持主从的高可用.进一步提高数据的安全性和业务的高可用.通过将主库上的日志传输 ...
- ionic开发中遇到的问题
开发调试过程中,会遇到这样的问题:同源策略请求url禁止请求. 一 网上搜的结果基本是2类: 1. 同源策略请求被阻止, 跨域问题,大家建议添加Access-Control-Allow-Origi ...
- 解决ubuntu使用命令sudo apt -get install 安装东西时出现"E: Sub-process /usr/bin/dpkg returned an error code (1) "的错误
问题描述: 今天在使用命令 "sudo apt-get install python3-pip"安装时,总是出现如下图这样的错误,开始以为是以为自己python版本的问题,后来发现 ...
- 全功能开发团队(FSD)
- RESTful API的十个最佳实践
WebAPI在过去几年里非常的盛行,我们很多以往的技术手段都慢慢的转换为使用WebAPI来开发,因为它的语法简单规范化,以及轻量级等特点,这种方式收到了广泛的推崇. 通常我们使用RESTFul(Rep ...
- 封装一个 TopBarBaseActivity
什么是快速开发嘞,看这个效果 然而我只用了这么几行代码: activity_main.xml 里面什么也没有! 其实说白了哈,就是我把 TopBar 封装在 TopBarBaseActivity 里面 ...
- XSS学习(未完..)
前言 XSS 漏洞原理非常简单,实际应用中非常灵活,于是通过 prompt(1) to win 来学习学习 正文 工具 分析正则表达式 https://regex101.com/ http://xss ...