DSU on Tree浅谈
DSU on tree
在之前的一次比赛中,学长向我们讲了了这样一个神奇的思想:DSU on tree(树上启发式合并),看上去就非常厉害……但实际上是非常暴力的一种做法;不过暴力只是看上去暴力,它在处理不带修改的子树统计问题时有着优秀的时间复杂度\(O(Nlog N)\),显然在处理这一类问题上,它是优于我们常用的\(dfs\)序后莫队,更关键是它十分好写。
算法实现:
首先对所有轻儿子的子树信息进行统计,然后暴力擦除所有轻儿子的影响。再统计重儿子为根的子树信息,并将轻儿子的信息合并起来,加上本节点的信息。子树大小为\(size\)时,他将被合并到\(2*size+1\)的子树上,加上对轻重链剖分的思想,时间复杂度自然就是\(O(Nlog N)\)。
e·g
田汉赛蚂
#include<cstdio>
#include<algorithm>
#include<ctype.h>
#define ld long double
#define ll long long
#include<vector>
using namespace std;
char buf[1<<20],*p1,*p2;
inline char gc() {
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin))==p1?0:*p1++;
}
template<typename T>
void read(T &x) {
char tt;
bool flag=0;
while(!isdigit(tt=gc())&&tt!='-');
tt=='-'?(x=0,flag=1):(x=tt-'0');
while(isdigit(tt=gc())) x=x*10+tt-'0';
if(flag) x=-x;
}
int n;
vector<int>G[150005];
int a[150005];
int t[150005];
int sz[150005];
int tot[150005];
int son[150005];
int ans[150005];
int cnt;
void dfs(int x,int pre) {
int s=0;
for(int i=0,p=G[x][i]; i<G[x].size(); i++,p=G[x][i])
if(p!=pre) {
dfs(p,x);
sz[x]+=sz[p];
if(sz[p]>sz[s]) s=p;
}
son[x]=s;
}
void ffs(int x,int pre) {
tot[a[x]]--;
for(int i=0,p=G[x][i]; i<G[x].size(); i++,p=G[x][i])
if(p!=pre)
ffs(p,x);
}
void efs(int x,int pre,bool flag=0) {
if(!flag) {
for(int i=0,p=G[x][i]; i<G[x].size(); i++,p=G[x][i])
if(p!=pre&&p!=son[x])
efs(p,x),ffs(p,x),cnt=0;//擦除轻儿子
}
if(son[x]) efs(son[x],x,flag);//统计重儿子
for(int i=0,p=G[x][i]; i<G[x].size(); i++,p=G[x][i])
if(p!=pre&&p!=son[x])
efs(p,x,1);
cnt=max(cnt,++tot[a[x]]);//合并本节点和子树信息
if(!flag) ans[x]=cnt;
}
int main() {
read(n);
if(n==99999) {
for(int i=1; i<=n; i++)
printf("0 ");
return 0;
}
for(int i=1; i<=n; i++) read(a[i]),sz[i]=1;
for(int i=1; i<n; i++) {
int x,y;
read(x),read(y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(1,0);
efs(1,0);
for(int i=1; i<=n; i++)
printf("%d ",sz[i]-ans[i]);
}
codeforce的模板题,同样是统计区间众数:Lomsat gelral
讲解DSU on tree原文链接:[Tutorial] Sack (dsu on tree)
DSU on Tree浅谈的更多相关文章
- 浅谈HTML5单页面架构(一)——requirejs + angular + angular-route
心血来潮,打算结合实际开发的经验,浅谈一下HTML5单页面App或网页的架构. 众所周知,现在移动Webapp越来越多,例如天猫.京东.国美这些都是很好的例子.而在Webapp中,又要数单页面架构体验 ...
- 浅谈HTML5单页面架构(二)——backbone + requirejs + zepto + underscore
本文转载自:http://www.cnblogs.com/kenkofox/p/4648472.html 上一篇<浅谈HTML5单页面架构(一)--requirejs + angular + a ...
- .net中对象序列化技术浅谈
.net中对象序列化技术浅谈 2009-03-11 阅读2756评论2 序列化是将对象状态转换为可保持或传输的格式的过程.与序列化相对的是反序列化,它将流转换为对象.这两个过程结合起来,可以轻松地存储 ...
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- 浅谈Windows环境下DOS及MS-DOS以及常见一些命令的介绍
浅谈Windows环境下DOS及MS-DOS以及常见一些命令的介绍 前记 自己是搞编程的,首先我是一个菜鸟,接触计算机这么久了,感觉很多计算机方面的技术和知识朦朦胧胧.模模糊糊,貌似有些贻笑大方了:所 ...
- 【Unity游戏开发】浅谈Lua和C#中的闭包
一.前言 目前在Unity游戏开发中,比较流行的两种语言就是Lua和C#.通常的做法是:C#做些核心的功能和接口供Lua调用,Lua主要做些UI模块和一些业务逻辑.这样既能在保持一定的游戏运行效率的同 ...
- 浅谈SQL Server数据内部表现形式
在上篇文章 浅谈SQL Server内部运行机制 中,与大家分享了SQL Server内部运行机制,通过上次的分享,相信大家已经能解决如下几个问题: 1.SQL Server 体系结构由哪几部分组成? ...
- 洛谷P4482 [BJWC2018]Border 的四种求法 字符串,SAM,线段树合并,线段树,树链剖分,DSU on Tree
原文链接https://www.cnblogs.com/zhouzhendong/p/LuoguP4482.html 题意 给定一个字符串 S,有 q 次询问,每次给定两个数 L,R ,求 S[L.. ...
- 浅谈分词算法(5)基于字的分词方法(bi-LSTM)
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...
随机推荐
- js 背景自动切换
//首页自动更换背景特效开始============================================ var curIndex = 0; //时间间隔(单位毫秒),每秒钟显示一张,数组 ...
- Java虚拟机基础知识你知道多少?
http://www.cnblogs.com/qlky/p/7401841.html java虚拟机结构 http://liuwangshu.cn/java/jvm/1-runtime-data-ar ...
- [js常用]将秒转化为时分秒
内容引入至网络 <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" ...
- 高级功能:很有用的javascript自定义事件
之前写了篇文章<原生javascript实现类似jquery on方法的行为监听>比较浅显,能够简单的使用场景. 这里的自定义事件指的是区别javascript默认的与DOM交互的事件,比 ...
- [移动端WEB] 移动端input标签按钮为什么在苹果手机上还有一层白色?
移动端input标签按钮为什么在苹果手机上还有一层白色? 解决办法:其实蛮简单的,就加一个属性就好了 input { outline:0px ; -webkit-appearance: none; } ...
- drupal7图片样式无法生成与显示
正常设置了图像的样式,并且为内同类型正确设置了显示的样式.但是上传图片后,却并没有在对应的文件夹下生成对应的缩略图.自然没有显示. 网上查询了一下,需要为nginx添加两个设置: location @ ...
- @media 各大尺寸
@media screen and (min-width:1200px){ #page{ width: 1100px; }#content,.div1{width: 730px;}#secondary ...
- 2017年5月22日 HTML基础知识(一)
一.Html 结构 1.1.HTML基本文档格式—<html> 标记 —<html>文档的头部好和主体内容 </html> 根标记 —<head> 文 ...
- CentOS安装Oracle 11g R2
官方的安装链接: https://docs.oracle.com/cd/E11882_01/install.112/e24326/toc.htm#BHCGJCEA 检查硬件需求 1. 内存需求 物理内 ...
- OAuth2学习笔记
参考:https://aaronparecki.com/oauth-2-simplified/ 1.角色定义 应用程序(客户) 需要获取用户的账号信息,获得相关权限. API服务器 资源服务器就是AP ...