P1586 四方定理
题目描述
四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和。例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案,25=4^{2}+3^{2}25=42+32 和25=5^{2}25=52 。给定的正整数nn ,编程统计它能分解的方案总数。注意:25=4^{2}+3^{2}25=42+32 和25=3^{2}+4^{2}25=32+42 视为一种方案。
输入输出格式
输入格式:
第一行为正整数tt (t\le 100t≤100 ),接下来tt 行,每行一个正整数nn (n\le 32768n≤32768 )。
输出格式:
对于每个正整数nn ,输出方案总数。
输入输出样例
1
2003
48
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int maxn = ;
// name*******************************
int f[][];
int t;
int n=;
int ans=;
// function****************************** //***************************************
int main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
me(f,);
f[][]=;
for(int i=; i*i<=n; i++)
for(int j=i*i; j<=n; j++)
for(int k=; k<=; k++)
f[j][k]+=f[j-i*i][k-]; cin>>t;
while(t--)
{
ans=;
cin>>n;
For(i,,)
ans+=f[n][i];
cout<<ans<<endl;
}
return ;
}
P1586 四方定理的更多相关文章
- 洛谷——P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42,当然 ...
- 洛谷 P1586 四方定理
P1586 四方定理 题目描述 四方定理是众所周知的:任意一个正整数nn,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+2 ...
- 洛谷P1586 四方定理
题目描述 四方定理是众所周知的:任意一个正整数nn ,可以分解为不超过四个整数的平方和.例如:25=1^{2}+2^{2}+2^{2}+4^{2}25=12+22+22+42 ,当然还有其他的分解方案 ...
- 洛谷p1586四方定理题解
题目 这个题的本质是动态规划中的背包问题. 为什么会想到背包呢. 因为往往方案数不是排列组合就是递推或者是dp,当然还有其他的可能.我们可以把一个数的代价当成这个数的平方,价值就是一个方案数.由于这个 ...
- 【Luogu】P1586四方定理(DP)
题目链接 此题使用DP.设f[i][j]表示数i用j个数表示,则对于所有的k<=sqrt(i),有 f[i][j]=∑f[i-k*k][j-1] 但是这样会有重复情况.所以先枚举k,再枚举i和j ...
- luogu P1586 四方定理(背包)
题意 题解 首先吐槽一下体面的第一句话.反正我不知道(可能是因为我太菜了) 可能没有睡醒,没看出来是个背包. 但告诉是个背包了应该就好做了. #include<iostream> #inc ...
- 四方定理(递归) --java
四方定理 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. import java.*; import java.util.*; p ...
- java实现第二届蓝桥杯四方定理
四方定理. 数论中有著名的四方定理:所有自然数至多只要用四个数的平方和就可以表示. 我们可以通过计算机验证其在有限范围的正确性. 对于大数,简单的循环嵌套是不适宜的.下面的代码给出了一种分解方案. 请 ...
- 【DP】【P1586】四方定理
传送门 Description Input 第一行为一个整数T代表数据组数,之后T行每行一个数n代表要被分解的数 Output 对于每个n输出一行,为方案个数 Sample Input Sample ...
随机推荐
- css之背景(background)家族
背景(background)是css中很重要的一部分,也是css的基础知道之一,现在来回顾css2中5个属性与css3中新增的3个属性和2个功能. CSS2_背景(background)前传 家族成员 ...
- AIX6.1配置etherchannel
如果系统之前网卡为up状态,需要将网卡变更为detach chdev -l en2 -a state=detach 绑定完成后,配置IP地址 #smitty mktcpip
- React Native常用组件样式总结
在react 中,有时要使用 style 指定样式 ,如要跟随放大比例关系,展示图标. const stylebutton = {width:25*scalesize, height:25*scale ...
- Spring Boot—14JdbcTemplate
pom.xml <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- JS实现点击参数面板按钮显示或隐藏数据
当报表中列出数据太多时,想通过显示按钮隐藏明细数据只显示统计数据.如下图示例,那么该如何实现呢?本文以FineReport为例,来讲述JS如何实现点击参数面板按钮显示或隐藏数据. 打开报表 在参数面板 ...
- python学习笔记之——文件I/O
1.print打印到屏幕 print "打印到屏幕" 2.读取读取键盘输入 (1)raw_input函数 raw_input([prompt]) 函数从标准输入读取一个行,并返回一 ...
- org.springframework.data.redis.cache.RedisCacheManager
org.springframework.data.redis.cache.RedisCacheManager
- Pig store用法举例
store:将数据存储到HDFS等文件系统里 将数据保存到/data目录 store data into '/data'; 以逗号为分隔符 store data into '/data' usin ...
- Eclipse连接sqlserver体验过程
以前装的sqlserver 2008试用期到了,就按照网上的步骤,彻底删除了sqlserver,然后又重新装了下,再用eclipse连接的时候,发现提示TCP/IP被禁用,然后找到了sqlserver ...
- 通过代码管理工具 git 完成一次完整的代码管理过程
1.从公共远程fork一份自己的本地远程之后,从本地远程 clone 到本地 2.将本地代码跟公共远程代码做关联配置 git remote add upstream https://github.co ...