题目传送门

矩阵乘法

题目描述

给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数。

输入输出格式

输入格式:

第一行两个数N,Q,表示矩阵大小和询问组数;

接下来N行N列一共N*N个数,表示这个矩阵;

再接下来Q行每行5个数描述一个询问:x1,y1,x2,y2,k表示找到以(x1,y1)为左上角、以(x2,y2)为右下角的子矩形中的第K小数。

输出格式:

对于每组询问输出第K小的数。

输入输出样例

输入样例#1:

2 2
2 1
3 4
1 2 1 2 1
1 1 2 2 3
输出样例#1:

1
3

说明

矩阵中数字是10^9以内的非负整数;

20%的数据:N<=100,Q<=1000;

40%的数据:N<=300,Q<=10000;

60%的数据:N<=400,Q<=30000;

100%的数据:N<=500,Q<=60000。


  分析:

  是的,这道题虽然叫矩阵乘法,但是和矩阵乘法一点关系都没有。

  求矩阵$k$小就能想到用整体二分,不过因为是二维,所以需要用二维树状数组,然后写法需要漂亮一点,因为这题有点卡常。

  另外,有一点需要讲一下,平常我写树状数组都是这样的:

inline void add(int pos,int x)
{
for(; pos<=n; pos+=lowbit(pos)) c[pos]+=x;
}

  但是在二维树状数组中就不能这么写,应该写成:

inline void add(int x,int y,int v)
{
for(int i=x; i<=n; i+=lowbit(i))
for(int j=y; j<=n; j+=lowbit(j)) c[i][j]+=v;
}

  Code:

//It is made by HolseLee on 6th Oct 2018
//Luogu.org P1527
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; const int N=4e5+;
int n,m,cnt,c[][],q1[N],q2[N],id[N],ans[N];
struct Node {
int x,y,v;
Node() {}
Node(const int _x,const int _y,const int _v):
x(_x), y(_y), v(_v) {}
bool operator < (const Node a) const {
return v < a.v;
}
}a[N];
struct Qus {
int x1,y1,x2,y2,k;
}q[N]; inline int read()
{
char ch=getchar(); int num =; bool flag=false;
while( ch<'' || ch>'' ) {
if( ch=='-' ) flag=true; ch=getchar();
}
while( ch>='' && ch<='' ) {
num=num*+ch-''; ch=getchar();
}
return flag ? -num : num;
} inline int lowbit(int x)
{
return x&(-x);
} inline void add(int x,int y,int v)
{
for(int i=x; i<=n; i+=lowbit(i))
for(int j=y; j<=n; j+=lowbit(j)) c[i][j]+=v;
} inline int quary(int x,int y)
{
int ret=;
for(int i=x; i; i-=lowbit(i))
for(int j=y; j; j-=lowbit(j)) ret+=c[i][j];
return ret;
} inline int get(int x1,int y1,int x2,int y2)
{
return quary(x2,y2)-quary(x1-,y2)-quary(x2,y1-)+quary(x1-,y1-);
} void solve(int l,int r,int L,int R)
{
if( l>r || L>R ) return;
if( l==r ) {
for(int i=L; i<=R; ++i) ans[id[i]]=a[l].v;
return;
}
int mid=(l+r)>>, cnt1=, cnt2=;
for(int i=l; i<=mid; ++i) add(a[i].x,a[i].y,);
for(int i=L; i<=R; ++i) {
int tmp=get(q[id[i]].x1,q[id[i]].y1,q[id[i]].x2,q[id[i]].y2);
if( tmp>=q[id[i]].k ) q1[++cnt1]=id[i];
else q[id[i]].k-=tmp, q2[++cnt2]=id[i];
}
for(int i=l; i<=mid; ++i) add(a[i].x,a[i].y,-);
for(int i=; i<=cnt1; ++i) id[L+i-]=q1[i];
for(int i=; i<=cnt2; ++i) id[L+cnt1+i-]=q2[i];
solve(l,mid,L,L+cnt1-); solve(mid+,r,L+cnt1,R);
} int main()
{
n=read(), m=read();
for(int i=; i<=n; ++i)
for(int j=; j<=n; ++j){
a[++cnt]=Node(i,j,read());
}
sort(a+,a+cnt+);
for(int i=; i<=m; ++i) {
q[i].x1=read(), q[i].y1=read(), q[i].x2=read(), q[i].y2=read();
q[i].k=read(); id[i]=i;
}
solve(,cnt,,m);
for(int i=; i<=m; ++i) printf("%d\n",ans[i]);
return ;
}

洛谷P1527 [国家集训队] 矩阵乘法 [整体二分,二维树状数组]的更多相关文章

  1. 【bzoj2738】矩阵乘法 整体二分+二维树状数组

    题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入 第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵:再接下来Q行每行5个数 ...

  2. 洛谷$P1527$ [国家集训队]矩阵乘法 整体二分

    正解:整体二分 解题报告: 传送门$QwQ$ 阿看到这种查询若干次第$k$小显然就想到整体二分$QwQ$? 然后现在就只要考虑怎么快速求出一个矩形内所有小于某个数的数的个数? 开始我的想法是离散化然后 ...

  3. BZOJ2738矩阵乘法——整体二分+二维树状数组

    题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入   第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵:再接下来Q行每行5 ...

  4. BZOJ.2738.矩阵乘法(整体二分 二维树状数组)

    题目链接 BZOJ 洛谷 整体二分.把求序列第K小的树状数组改成二维树状数组就行了. 初始答案区间有点大,离散化一下. 因为这题是一开始给点,之后询问,so可以先处理该区间值在l~mid的修改,再处理 ...

  5. [BZOJ2738]矩阵乘法 整体二分+二维树状数组

    2738: 矩阵乘法 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1643  Solved: 715[Submit][Status][Discuss ...

  6. [BZOJ2738]矩阵乘法(整体二分+二维树状数组)

    整体二分+二维树状数组. 好题啊!写了一个来小时. 一看这道题,主席树不会搞,只能用离线的做法了. 整体二分真是个好东西,啥都可以搞,尤其是区间第 \(k\) 大这种东西. 我们二分答案,然后用二维树 ...

  7. 洛谷 P1527 [国家集训队]矩阵乘法 解题报告

    P1527 [国家集训队]矩阵乘法 题目描述 给你一个\(N*N\)的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第\(K\)小数. 输入输出格式 输入格式: 第一行两个数\(N,Q\),表示矩阵大 ...

  8. BZOJ 2738 矩阵乘法(整体二分+二维树状数组)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2738 [题目大意] 给出一个方格图,询问要求求出矩阵内第k小的元素 [题解] 我们对答 ...

  9. [洛谷P1527] [国家集训队]矩阵乘法

    洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...

随机推荐

  1. async-lock模块理解

    在Appium1.7.1里集成了一个同步模块async-lock用来支持多会话功能. 只能说就算是以单线程高并发闻名的I/O密集型Nodejs也不得不扩展额外的同步块方法,或者说,在现有的计算机体系结 ...

  2. window对象中的一些重要的属性和方法(笔记)

    setTimeout()方法用来实现一个函数在指定的毫秒数之后运行:setTimeout()返回一个值,这个值可以传递给clearTimeout()用于取消这个函数的执行.由于历史原因,setTime ...

  3. python 爬虫 ~ 查看收发包的情况

    DebugLog 可以用来查看收发包的情况,比较有意思,现特意记录下来: Sample: import urllib2 httpHandler = urllib2.HTTPHandler(debugl ...

  4. Python练习-一个简单易懂的迭代器,了解一下

    今天我们学习了迭代器,其实可以理解为是一个元素容器被遍历的方式,不难理解,看看下面的小例子: # 编辑者:闫龙 #一个简单的迭代器 l = [1,2,3,4,5,6,7]#建立一个列表l ite = ...

  5. 【译】第五篇 Integration Services:增量加载-Deleting Rows

    本篇文章是Integration Services系列的第五篇,详细内容请参考原文. 在上一篇你学习了如何将更新从源传送到目标.你同样学习了使用基于集合的更新优化这项功能.回顾增量加载记住,在SSIS ...

  6. web项目打包后在代码中获取资源文件

    在web项目里面,有时代码里面需要引用一些自定义的配置文件,这些配置文件如果放在类路径下,项目经过打包后使用的相对路径也会发生变化,所以以下给出了三种解决方案. 一.properties下配置 在类路 ...

  7. 20165230 2017-2018-2 《Java程序设计》第9周学习总结

    20165230 2017-2018-2 <Java程序设计>第9周学习总结 教材学习内容总结 第十二章 java网络编程 学习了用于网络编程的类,了解URL.Socket.InetAdd ...

  8. python 爬虫简单的demo

    ''' @author :Eric-chen @contact:809512722@qq.com @time :2018/1/3 17:55 @desc :通过爬取http://movie.douba ...

  9. 【C++】数组-二分法查找

    1.原理 对于给定值的查找,如果大于该数组的中间元素,下一步在元素值大的区域继续与其中间元素比较:否则下一步在元素值小的区域内继续查找,直到找到目标元素.如果到最后还没有找到,则输出"数组中 ...

  10. 1 - django-介绍-MTV-命令-基础配置-admin

    目录 1 什么是web框架 2 WSGI 3 MVC与MTV模式 3.1 MVC框架 3.2 MTV框架 3.3 区别 4 django介绍 4.1 Django处理顺序 4.2 创建django站点 ...