在神经网络中,广泛的使用反向传播和梯度下降算法调整神经网络中参数的取值。

梯度下降和学习率:

  假设用 θ 来表示神经网络中的参数, J(θ) 表示在给定参数下训练数据集上损失函数的大小。

  那么整个优化过程就是寻找一个参数θ, 使得J(θ) 的值最小, 也就是求J(θ) 的最小值

  

  损失函数J(θ)的梯度 = ∂ J(θ) / ∂ θ

  此时定义一个学习率 η

  梯度下降法更新参数的公式为: θn+1 = θ- η ( ∂ J(θn) / ∂ θn )

  将这个公式循环的重复下去,θ的值就从高处逐渐向最低处一小步一小步的移动

举个例子:

  使用梯度下降 使得损失函数函数 J(x) = x的值尽量小,  由二次函数图像开口向上可以知道,二次函数最小值为0,

  梯度 ▽ = ∂ J(x) / ∂ x = 2x

  假设初始值为 x= 5, 设置学习率为0.3

  使用梯度下降更新x的值 步骤如下:

  轮数      当前参数x      梯度 * 学习率      更新后参数

  1        5           2*5*0.3 = 3      5-3=2

  2        2          2*2*0.3 = 1.2      2-1.2 = 0.8

  3        0.8         2*0.8*0.3 = 0.48    0.8-0.48 = 0.32

  4        0.32        2*0.32*0.3 = 0.192    0.32-0.192=0.128

  5        0.128          2*0.128*0.3=0.0768   0.128-0.0768=0.0512

  经过五次迭代x从5变成了0.0512, 已经和0非常接近了。

但是梯度下降并不能每次都能获得全局最优解。

  如果学习率过小,可能会导致陷入局部最优解的情况。如图:

  如果学习率过大,很可能在最优解两侧来回回荡,永远也到不了最低点。

    

举个例子:

  使用梯度下降 使得损失函数函数 J(x) = x的值尽量小,  由二次函数图像开口向上可以知道,二次函数最小值为0,

  梯度 ▽ = ∂ J(x) / ∂ x = 2x

  假设初始值为 x= 5, 设置学习率为 1

  使用梯度下降更新x的值 步骤如下:

  轮数      当前参数x      梯度 * 学习率      更新后参数

  1        5           2*5*1= 10      5-10 = -5

  2        -5          2*-5*1 =-10     -5+10 = 5

继续下去他仍会来回摆荡,永远无法收敛

可见, 学习率过大或者过小都不好。

tensorflow为我们提供了一种灵活的学习率设置方式----指数衰减: tf.train.exponential_decy函数

  每一轮的学习率 = 学习率 * 衰减系数^(global_steps/decay_steps)

  随着步数的增加,学习率在变小,并且步数越多,变小的速度越慢

  learning_rate = tf.train.exponential_decay(学习率, global_step, decay_step, 衰减系数,staircase=True)

    global_step 是当前已经执行多少步了

    decay_step 是下降速度,指的是 每隔多少步,学习率指数增长一个

  例如:

     tf.train.exponential_decay(0.1, global_step, 100, 0.96,staircase=True)

    初始学习率0.1 每隔100步 学习率乘以0.96

    stairecase 为true的时候,以阶梯方式下降,  为False时候 以平滑曲线下降

  

机器学习之路: 深度学习 tensorflow 神经网络优化算法 学习率的设置的更多相关文章

  1. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  2. 深度学习---tensorflow简介

    个core可以有不同的代码路径.对于反向传播算法来说,基本计算就是矩阵向量乘法,对一个向量应用激活函数这样的向量化指令,而不像在传统的代码里会有很多if-else这样的逻辑判断,所以使用GPU加速非常 ...

  3. 吴裕雄--天生自然 神经网络人工智能项目:基于深度学习TENSORFLOW框架的图像分类与目标跟踪报告(续四)

    2. 神经网络的搭建以及迁移学习的测试 7.项目总结 通过本次水果图片卷积池化全连接试验分类项目的实践,我对卷积.池化.全连接等相关的理论的理解更加全面和清晰了.试验主要采用python高级编程语言的 ...

  4. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  5. AI学习---深度学习&TensorFlow安装

    深度学习   深度学习学习目标: 1. TensorFlow框架的使用 2. 数据读取(解决大数据下的IO操作) + 神经网络基础 3. 卷积神经网络的学习 + 验证码识别的案例   机器学习与深度学 ...

  6. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  7. 深度学习Tensorflow相关书籍推荐和PDF下载

    深度学习Tensorflow相关书籍推荐和PDF下载 baihualinxin关注 32018.03.28 10:46:16字数 481阅读 22,673 1.机器学习入门经典<统计学习方法&g ...

  8. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  9. 神经网络优化算法:梯度下降法、Momentum、RMSprop和Adam

    最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结.吴恩达的深度 ...

随机推荐

  1. Samba远程代码执行漏洞(CVE-2017-7494)复现

    简要记录一下Samba远程代码执行漏洞(CVE-2017-7494)环境搭建和利用的过程,献给那些想自己动手搭建环境的朋友.(虽然已过多时) 快捷通道:Docker ~ Samba远程代码执行漏洞(C ...

  2. SolrJ案例实现搭建环境——(十五)

    案例

  3. 10 Useeful Tips for Writing Effective Bash Scripts in Linux

    1.Always Use Comments in Scripts2.Make a Scripts exit When Fails    Sometimes bash may continue to e ...

  4. python的面对对象

    创建类 使用 class 语句来创建一个新类,class 之后为类的名称并以冒号结尾: class ClassName: '类的帮助信息' #类文档字符串 class_suite #类体 类的帮助信息 ...

  5. 利用JS验证查询参数-选择月份后必须选择年份

    js代码: function queryAgentInfo(){ // 标记 var flag=false; //遍历所有月份 $(".month").each(function( ...

  6. 【前端】上拉加载更多dropload.min.js的使用

    代码如下:入职代码修改接口及html为自己的即可(下面主要展示js部分) <!DOCTYPE html><html> <head> <meta charset ...

  7. set IDENTITY_INSERT on 和 off 的设置

    qlserver 批量插入记录时,对有标识列的字段要设置 set IDENTITY_INSERT 表名 on,然后再执行插入记录操作;插入完毕后恢复为 off 设置 格式:  set IDENTITY ...

  8. Windows平台的rop exp编写

    摘抄自看雪 Windows的ROP与Linux的ROP并不相同,其实Linux下的应该叫做是ret2libc等等.Windows的ROP有明确的执行目标,比如开辟可执行内存然后拷贝shellcode, ...

  9. ***codeigniter操作xml(Simplexml第三方扩展)

    This Simplexml class provides an alternative implementation of the SimpleXML API that works under PH ...

  10. 移动端布局 - REM方式

    默认以宽度为640px的设计稿为基准页面,然后通过JS获取当前显示设备的尺寸,对应的调整 html 标签的font-size大小,从而实现通过以rem为单位的移动端布局适配. 具体代码 (functi ...