title: poj-1151矩形面积并-线段树

date: 2018-10-30 22:35:11

tags:

  • acm
  • 刷题

    categoties:
  • ACM-线段树

概述

线段树问题里的另一个问题,,,矩形面积并,,,,

之前看lazy更新时看到下面这个的讲解,,,一大堆文字还有一大堆的图,,,,当时果断跳过,,,

今天花了一下午加一晚上的时间看了看这块知识,,,然后尝试自己写出代码,,,算是简单的了解一下这块,,,

题意

这道矩形面积并问题的大意是给很多个矩形,,矩形之间可能有交集,,,然后问你这一大片的图形面积是多少,,,,

数据量不大,,看到有很多人是暴力过的,,,

但是用线段树来当作练习题锻炼锻炼思维还是很好的QAQ

思路

一开始我是看这篇博客有关矩形面积并的知识,,,

这篇博客讲解的思路很不错,,,一遍之后大致了解了整个解决问题的思路,,,,但是它没有相应的练习题以及代码,,,,我完全不知道该从哪里下手,,,线段树的具体如何实现一脸懵逼,,,,还有,,,一般这种题都是要将一个方向的坐标 离散化,,,,嗯,,又是这个东西,,,,更是一脸的懵逼,,,,

然后看了这篇博客,,对着代码,,,然后顺着思路写出来了,,,

主要的几点:

  • 前面两个博客的图很形象的把思路理了一遍,,,,就是枚举一个方向,,比如y方向,,然后,,将x方向的坐标离散化,,分成若干个 单位线段,,,,线段树维护这个单位线段,,,还是那个博客形象一些
  • 整个图形的面积可以分成若干个小的矩形,,,然后加起来就行,,,,

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm> using namespace std;
#define aaa cout << x[r + 1] << "----" << x[l] << endl;
const int maxn = 205;
double x[maxn << 2]; //所有的x的数据
//每一条线段
struct segment
{
double y;
double l;
double r;
int flag; //1 or -1: 入边or出边
segment(){}
segment(double y, double l , double r , int flag):y(y) , l(l) , r(r) , flag(flag){}
bool operator < (const segment &res)
{
return y < res.y;
}
}seg[maxn << 1]; //线段树维护所有的单位线段(离散后的)
struct node
{
int cov;
double len;
}node[maxn << 2];
void pushdown(int rt , int l , int r)
{
if(node[rt].cov)
node[rt].len = x[r + 1] - x[l];
else if(l == r)
node[rt].len = 0;
else
node[rt].len = node[rt << 1].len + node[rt << 1 | 1].len;
}
void update(int rt , int l , int r , int L , int R , int cov)
{
if(L <= l && r <= R)
{
node[rt].cov += cov;
pushdown(rt , l , r);
return;
}
int mid = (l + r) >> 1;
if(L <= mid) update(rt << 1 , l , mid , L , R , cov);
if(R > mid) update(rt << 1 | 1 , mid + 1 , r , L , R , cov);
//pushdown
pushdown(rt , l , r);
return;
} int main()
{
int n;
int q = 1;
while(scanf("%d" , &n) && n)
{
memset(x , 0 , sizeof x); double x1 , y1 , x2 , y2;
int count = 0;
for(int i = 0; i < n; ++i)
{
scanf("%lf%lf%lf%lf" , &x1 , &y1 , &x2 , &y2);
seg[count]=segment(y1 , x1 , x2 , 1);
x[count++] = x1;
seg[count]=segment(y2 , x1 , x2 , -1);
//segment[i].y = y1;segment[i].l = x1;segment[i].r = x2;segment[i].flag = 1;
//segment[i + 1].y = y2;segment[i + n].l = x1;segment[i + n].r = x2;segment[i + n].flag = -1; x[count++] = x2;
}
//离散
sort(seg , seg + count);
sort(x , x + count); int sz = unique(x , x + count) - x;
double ans = 0;
for(int i = 0; i < count; ++i)
{
int l = lower_bound(x , x + sz , seg[i].l) - x;
int r = lower_bound(x , x + sz , seg[i].r) - x - 1;
update(1 , 0 , sz , l , r , seg[i].flag);
ans += node[1].len * (seg[i + 1].y - seg[i].y);
}
printf("Test case #%d\nTotal explored area: %.2f\n\n",q++,ans);
}
}

总结

算了,,,先鸽了,,,细节那天再补一下,,,,

(loading,,,,)

poj-1151矩形面积并-线段树的更多相关文章

  1. POJ 1151Atlantis 矩形面积并[线段树 离散化 扫描线]

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21734   Accepted: 8179 Descrip ...

  2. POJ 1151 / HDU 1542 Atlantis 线段树求矩形面积并

    题意:给出矩形两对角点坐标,求矩形面积并. 解法:线段树+离散化. 每加入一个矩形,将两个y值加入yy数组以待离散化,将左边界cover值置为1,右边界置为2,离散后建立的线段树其实是以y值建的树,线 ...

  3. POJ1151Atlantis 矩形面积并[线段树 离散化 扫描线]

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21734   Accepted: 8179 Descrip ...

  4. HDU1542 Atlantis —— 求矩形面积并 线段树 + 扫描线 + 离散化

    题目链接:https://vjudge.net/problem/HDU-1542 There are several ancient Greek texts that contain descript ...

  5. hdu 1255 覆盖的面积(线段树 面积 交) (待整理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积.   In ...

  6. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  7. HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)

    链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...

  8. HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)

    Description Ted has a new house with a huge window. In this big summer, Ted decides to decorate the ...

  9. POJ 1177/HDU 1828 picture 线段树+离散化+扫描线 轮廓周长计算

    求n个图矩形放下来,有的重合有些重合一部分有些没重合,求最后总的不规则图型的轮廓长度. 我的做法是对x进行一遍扫描线,再对y做一遍同样的扫描线,相加即可.因为最后的轮廓必定是由不重合的线段长度组成的, ...

随机推荐

  1. 【AtCoder Grand Contest 012C】Tautonym Puzzle [构造]

    Tautonym Puzzle Time Limit: 50 Sec  Memory Limit: 256 MB Description 定义一个序列贡献为1,当且仅当这个序列 由两个相同的串拼接而成 ...

  2. Bzoj3352 [ioi2009]旅行商

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 36 Description 旅行商认定如何优化旅行路线是一个非常棘手的计算问题 ...

  3. input新类型详解

    http://www.webhek.com/post/html5-input-type.html

  4. 【译】第八篇 Integration Services:高级工作流管理

    本篇文章是Integration Services系列的第八篇,详细内容请参考原文. 简介在前面两篇文章,我们创建了一个新的SSIS包,学习了SSIS中的脚本任务和优先约束,并检查包的MaxConcu ...

  5. 免費域名申請.me .im .in .co .la .do .ms .kz .tk .ru .mu .pn .tt

    免費申請域名 .la .la 域名 – 原先是ICANN分配給老撾的國家頂級域名,不過後來被同時作為了美國洛杉矶市的域名後綴. 免費申請地址: http://www.idv.la http://www ...

  6. torch.Tensor.view (Python method, in torch.Tensor)

    返回具有相同数据但大小不同的新张量.返回的张量共享相同的数据,必须具有相同数量的元素,但可能有不同的大小. Example >>> x = torch.randn(4, 4) > ...

  7. Linux学习笔记-文件系统和基本命令

    目录 分区设备文件名 分区 挂载 文件目录 文件处理命令 目录处理命令 硬件设备文件名 IDE硬盘 /dev/hd[a-d] USB硬盘 /dev/sd[a-p] 光驱 /dev/cdrom或者/de ...

  8. Robotium测试套管理测试用例

    前提:已写好测试用例 新建个测试套MyTestSuite管理你需要跑的测试用例,或者将相同功能的测试用例归纳到一个测试套中 package com.robotium.test.testsuite; i ...

  9. 使用脚本实现killproc的功能

    在shell提示符号下输入type killproc,会发现killproc实在 /sbin/目录下,通过man killproc可以查看这个脚本(姑且这么称为脚本)的用法,现在,把这个脚本的实现过程 ...

  10. Scrapy官网程序执行示例

    Windows 10家庭中文版本,Python 3.6.4,Scrapy 1.5.0, Scrapy已经安装很久了,前面也看了不少Scrapy的资料,自己尝试使其抓取微博的数据时,居然连登录页面(首页 ...