[leetcode]238. Product of Array Except Self除了自身以外的数组元素乘积
Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Example:
Input:[1,2,3,4]
Output:[24,12,8,6]
Note: Please solve it without division and in O(n).
思路
1. from left to right, save each item's left side product
2. from right to left, maintain a variable temp to track each item's right side product, then fill product (left * right) into result

代码
class Solution {
public int[] productExceptSelf(int[] nums) {
int[]dp = new int[nums.length];
dp[0] = 1;
// left to right
for( int i = 1; i< nums.length; i++){
dp[i] = dp[i-1] * nums[i-1];
}
// right to left
int temp = 1;
for( int i = nums.length-1; i>=0; i--){
dp[i] = dp[i] *temp;
temp = temp*nums[i];
}
return dp;
}
}
[leetcode]238. Product of Array Except Self除了自身以外的数组元素乘积的更多相关文章
- [LeetCode] 238. Product of Array Except Self 除本身之外的数组之积
Given an array nums of n integers where n > 1, return an array output such that output[i] is equ ...
- LeetCode 238. Product of Array Except Self (去除自己的数组之积)
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...
- LN : leetcode 238 Product of Array Except Self
lc 238 Product of Array Except Self 238 Product of Array Except Self Given an array of n integers wh ...
- 剑指offer 66. 构建乘积数组(Leetcode 238. Product of Array Except Self)
剑指offer 66. 构建乘积数组 题目: 给定一个数组A[0, 1, ..., n-1],请构建一个数组B[0, 1, ..., n-1],其中B中的元素B[i] = A[0] * A[1] * ...
- (medium)LeetCode 238.Product of Array Except Self
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...
- Java [Leetcode 238]Product of Array Except Self
题目描述: Given an array of n integers where n > 1, nums, return an array output such that output[i] ...
- C#解leetcode 238. Product of Array Except Self
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...
- leetcode 238 Product of Array Except Self
这题看似简单,不过两个要求很有意思: 1.不准用除法:最开始我想到的做法是全部乘起来,一项项除,可是中间要是有个0,这做法死得很惨. 2.空间复杂度O(1):题目说明了返回的那个数组不算进复杂度分析里 ...
- Leetcode 238 Product of Array Except Self 时间O(n)和空间O(1)解法
1. 问题描写叙述 给定一个n个整数的数组(n>1n>1)nums,返回一个数组output,当中的元素outputioutput_i的值为原数组nums中除numsinums_i之外的全 ...
随机推荐
- linux 添加secondary ip
linux下ip地址除了primary外,还有两种:1. ip alias(子接口)2. secondary ip(辅助ip) 都可在一块物理网卡上添加,alias由ifconfig添加,ifconf ...
- SpringMVC整合Hessian访问远程服务
1.1 Hessian简介 Hessian是一个轻量级的Web服务实现工具,它采用的是二进制协议,因此很适合发送二进制数据.它的一个基本原理就是把远程服务对象以二进制的方式进行发送 ...
- Oracle中分页查询和联表查询
1.使用ROWNUM伪列查询 1.1.查询十条数据(rownum<=n) SELECT ROWNUM,A.* FROM v_sjjx_unit_info A WHERE ROWNUM<=1 ...
- ORA-03113:通信通道的文件结尾
问题: 用命令startup启动实例时,报错“ORA-03113:通信通道的文件结尾”. 解决: SQL> startup mount ORACLE 例程已经启动. Total System G ...
- sklearn.svm.SVC 参数说明
原文地址:sklearn.svm.SVC 参数说明 ============================== 资源: sklearn官网+DOC 库下载GitHub =============== ...
- delphi WebBrowser的使用方法详解(五)-难点释疑
网页代码:<SELECT id=fy onchange=TouchRefresh(1) name=fy> <OPTION selected value=15>每頁顯示15筆&l ...
- 经典算法 Manacher算法详解
内容: 1.原始问题 =>O(N^2) 2.Manacher算法 =>O(N) 1.原始问题 Manacher算法是由题目“求字符串中长回文子串的长度”而来.比如 abcdcb 的 ...
- 51. linux卸载jdk
看有的资料上说有些Linux自带的有jdk1.4:如果自带的有jdk1.4的话首先要把jdk1.4卸载掉.具体做法: 输入命令: #rpm -qa | grep gcj 如果输出没有内容,说明没有jd ...
- 制作keil5的pack
[原创出品§转载请注明出处] 出处:http://www.cnblogs.com/libra13179/p/6273415.html 我在这里就交大家怎样制作自己的Pack,(这里是我制作好的http ...
- select(下拉标签和textarea(文本框)
Title 北京 南京 天津 武汉 石家庄 太原 dsadasd <!DOCTYPE html> <html lang="en"> <head&g ...